SmartProvenance: A Distributed, Blockchain Based Data
Provenance System

Aravind Ramachandran
The University of Texas At Dallas
Richardson, Texas
axr156530@utdallas.edu

ABSTRACT

Blockchain technology has evolved from being an immutable ledger
of transactions for cryptocurrencies to a programmable interactive
environment for building distributed reliable applications. Although
the blockchain technology has been used to address various chal-
lenges, to our knowledge none of the previous work focused on
using Blockchain to develop a secure and immutable scientific data
provenance management framework that automatically verifies
the provenance records. In this work, we leverage Blockchain as a
platform to facilitate trustworthy data provenance collection, ver-
ification, and management. The developed system utilizes smart
contracts and open provenance model (OPM) to record immutable
data trails. We show that our proposed framework can securely
capture and validate provenance data that prevents any malicious
modification to the captured data as long as the majority of the
participants are honest.

KEYWORDS

Distributed systems, Knowledge Management, Data Provenance,
Blockchain platform

ACM Reference Format:

Aravind Ramachandran and Murat Kantarcioglu. 2018. SmartProvenance:
A Distributed, Blockchain Based Data Provenance System. In CODASPY
’18: Eighth ACM Conference on Data and Application Security and Privacy,
March 19-21, 2018, Tempe, AZ, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3176258.3176333

1 INTRODUCTION

As the data used for research increases exponentially, ensuring
information quality and preventing data manipulation has emerged
as an important factor affecting the research results. For example,
an audit conducted by the Cancer and Leukemia Group B, one of the
multi-center cancer clinical trial groups sponsored by the National
Cancer Institute found an incidence of fraud of 0.25 percentage of
the trials conducted [11].

To avoid data frauds such as data fabrication, under-reporting
and falsifying the results to match research objectives in critical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY ’18, March 19-21, 2018, Tempe, AZ, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5632-9/18/03...$15.00
https://doi.org/10.1145/3176258.3176333

Murat Kantarcioglu
The University of Texas At Dallas
Richardson, Texas
muratk@utdallas.edu

research, the provenance of the data has to be maintained. In this
context, data provenance is a meta-data that describes where the
data of interest originated, who owns the data and what were the
transformations that were done on the data. Data provenance fa-
cilitates the integration of data from diverse sources as well as
providing information of these sources. Also, it acts as a yardstick
for measuring how far the results of the experiments support the
actual objectives of the research. This results in increased trans-
parency and trustworthiness of the research. For example, in [16],
authors highlight the increase in transparency and trustworthi-
ness of research results due to data provenance tracking. Therefore,
provenance details of the data must be recorded from its generation
to the transformations to the productions of results. In section 7,
we discuss a real-world setting where the provenance of data is
crucial to prevent fraud.

Main challenges for a provenance system are secure collection
and storage, verifiability and preserving the privacy of the collected
provenance data. Data used in any form of research may come from
a myriad of sources and may contain sensitive information such
as patient records. A data provenance management system should
ensure that the data is protected against unauthorized access, and
privacy violations.

Due to the importance of collecting provenance information,
systems such as Chimera [28] and myGrid [6] have been developed
to store and process provenance information. Many of the exist-
ing provenance systems are based on a centralized storage model.
The downside to the centralized system architecture is that if the
central server is compromised, the whole data provenance trails
could be compromised. In provenance systems based on distributed
architecture, the security of the data provenance information is
another area of contention. Any authorized users can corrupt the
data stored in the provenance system. To our knowledge, the cur-
rent provenance systems do not try to validate the changes before
they are stored. Our proposed SmartProvenance addresses these
issues by using Blockchain as a medium for storing provenance in-
formation and providing validations for each of the changes before
logging the changes using smart contracts. Due to the immutable
nature of the Blockchain environment, the approved provenance
changes that are logged cannot be modified by any users once they
are stored. In SmartProvenance, due to the distributed nature of the
Blockchain, the data provenance trails are replicated on every node
of the blockchain ensuring high availability and fault tolerance.

1.1 Overview of Our Contributions

To address the above-mentioned challenges and requirements, we
propose a system, SmartProvenance, to securely capture scientific
provenance data. SmartProvenance provides a platform, built using

https://doi.org/10.1145/3176258.3176333
https://doi.org/10.1145/3176258.3176333

CODASPY 18, March 19-21, 2018, Tempe, AZ, USA

autonomous programs called smart contracts in the blockchain, for
automated generation and verification of provenance data. The pro-
posed system implements techniques such as secure storage of data
trails, access control policies, voting mechanism, and penalty pay-
ments to ensure that no malicious changes are made to the prove-
nance trails. The SmartProvenance system provides customized
verification scripts for users to determine whether the submitted
changes are valid or not.

We have implemented a SmartProvenance system on top of the
Ethereum blockchain [5] along with Meteor framework [24] for
developing interfaces for the user’s client module. We evaluate the
system in the real-world scenario of clinical drug trials. The results
show that SmartProvenance system captures data provenance with
fixed cost and moderate overhead.

The paper is structured as follows: Section 2 describes the system
model. Section 3 discusses the system architecture and provenance
life cycle. In Section 4, we take a detailed look at the various compo-
nents of the system and their functionalities. Section 5 describes the
voting process implemented for verification of data modifications.
In Section 6, we analyze the security and privacy parameters of
the system. Section 7 details the results obtained by implementing
SmartProvenance in real-world environments. In Section 8 we com-
pare SmartProvenance with other related blockchain based systems.
We conclude the paper with Section 9.

2 BACKGROUND

In this section, we discuss some of the tools used by our system
and our threat model assumptions.

2.1 Ethereum

SmartProvenance is built on top of the Ethereum [30], a distributed

public blockchain. Ethereum is a worldwide network of intercon-
nected computers that execute and validate programs. Ethereum

provides a decentralized Turing-complete platform called Ethereum

virtual machines to run application codes called smart contracts.
Smart contracts are codes that reside within the Ethereum blockchain
environment that execute when specific conditions are met. Each

unique entity (user or smart contract) in the network is identified

by a unique public key known as an address. As the smart contracts

reside on top of the blockchain, each execution of a smart contract

is also recorded in the blockchain. A smart contract has two types

of data storage: state storage which stores data of the variables

in the smart contract and the event logs. Events are notification

mechanisms in the smart contract that allow it to trigger some

external functionalities. Event logs are as the name suggests an

immutable record of the sequence of events that are emitted by

a smart contract. A smart contract is called or triggered through

transactions. A transaction can be viewed as a message that is sent

between addresses in the network. Transactions may not involve

value exchange. Ethereum also provides a currency called ether
that is used to implement value exchange between parties in the

platform. In the Ethereum blockchain platform, each computational

step has a cost associated with it called gas [30]. To execute each

transaction, the initiator of the transaction has to pay the corre-
sponding gas price for each step executed in the transaction. At the

time of writing this paper 1 gas is equal to 0.00002 ethers.

Aravind Ramachandran and Murat Kantarcioglu

2.2 Provenance Model

The SmartProvenance system represents the data provenance trails
using Open Provenance Model (OPM) [26]. In the OPM methodol-
ogy, each action of the current system is represented using three pa-
rameters: 1) artifact (e.g., documents, files) before and after change
versions, 2) an agent which represents the initiator of the change
and, 3) the process which is the process that changes the artifact
from the previous version to the current version. In our project, we
represent the OPM model as a triple describing what the agents,
artifacts, and process are, and also number code relationship edges
between them. For example, the action of modifying a file can be
represented in OPM as a tuple (user, file: old version, file: new version,
the process used for modifications).

2.3 Threat Model

The SmartProvenance system can have two types of attackers: an
external adversary and an internal adversary. An external adversary
is a user who does not have access to the document/data in the sys-
tem, but will actively try to corrupt the data provenance trails of a
particular private document/data. An internal adversary has access
to the document/data granted by the owner in the SmartProvenance
system. The internal adversary is able to change the document
and log the changes as provenance trails on the blockchain. The
internal adversary tries to corrupt the provenance chain by logging
incorrect details to the chain. For this work, we assume that the
external adversary does not know the key to decrypt the document
nor does he have access to the location in which the document
is stored. The adversary only has knowledge of the document id
and uses this information to mount an attack on the system. For
the case of an internal adversary, we assume that he is not the
owner of a document who can grant access to the document. The
SmartProvenance guarantees truthful behavior if at least half of the
users that can access the documents and associated provenance
data are honest [13]. Finally, we assume that the cloud storage is not
trustworthy and all the files version stored are encrypted through
a shared key using a symmetric key encryption. We also assume
that there exists a secure external key sharing platform through
which the owner of the document can share the keys.

3 SYSTEM OVERVIEW

We consider a scientific setting where researchers keep their re-
search records as a document stored in the cloud. The document
(e.g., any data file) is encrypted by the owner of the document (e.g.,
the lead researcher). The owner of the research document provides
access to the document to users by providing the key. For a user to
log the provenance information in the SmartProvenance system, the
owner of a document needs to grant access to the unique document
log to the user. In the SmartProvenance system model, the changes
to the documents are made through versioning. Each change re-
lated to a document is stored as a separate new version. The system
assumes that only the latest version of the document/data file is
used for modification. The system checks the condition that any
document which contains changes not logged in the provenance
data is ignored.

SmartProvenance: A Distributed, Blockchain Based Data Provenance System

The system encourages truthful behavior by penalizing the users
who submit wrong change provenance details. The voters are re-
warded in the event they find a defective change submitted with a
portion of the deposit amount for the change. The users log valid
changes to the system using client applications running in each of
the individual user’s browser. Each of the client applications stores
persistent data about the documents that the current user has access
to using a database. For the current version of SmartProvenance,
meteor JS [30] and MongoDB [25] are used to implement the client
applications. The client applications communicate with the smart
contract through a Geth node which is a program that Ethereum
platform uses to communicate with the main blockchain network,
running on the client side. The client applications monitor the rele-
vant smart contracts for data change events and initiate verification
process. The smart contract module implements functionalities
such as access control policies and provenance trail storage.

4 SYSTEM DETAILS

The SmartProvenance system consists of two modules. The on-
chain module which mainly consists of Ethereum Smart contracts
for access control, generating and storing provenance trails and
conducting voting process, and the off-chain module which consist
of client application that interfaces with the smart contracts to log
the changes, provide timers for voting processes and perform the
verification of each file change using the cloud-based verification
script.

4.1 On-chain module

The Ethereum blockchain provides executable programs, called
Smart Contracts, that reside within the blockchain. The Smart Con-
tracts execute only when called and are capable of maintaining
state variables. SmartProvenance on-chain module mainly consists
of two smart contracts which we discuss next.

4.1.1 Document Tracker contract. The Document Tracker smart
contract is used to keep track of changes to a given document.
Document Tracker contract implements access control policies
and restricts user access to the document’s provenance trails. The
contract also provides methods for provenance trail generation for
a particular document. The generated document trails are stored as
events in the event log of the Document Tracker contract. Event
log storage of data provenance trails is preferred due to cost per
storage consideration in the Ethereum blockchain environment [4].

The format of the change event is described in detail in our de-
tailed paper [29]. Each change event also stores the digital signature
of the initiator based on the message digest. The Document Tracker
restricts access to all document functionalities such as create a doc-
ument for tracking, grant users rights to add changes to a particular
document provenance history, revoke users access rights to a par-
ticular document history and finally generate and store provenance
history of a particular document to the log.

It is important to note that, SmartProvenance does not store any
sensitive information in plain text on the blockchain because any
information stored on the blockchain including the smart contract
code is publicly accessible. In addition, due to storage costs and
blockchain storage limits, actual data is stored off the blockchain,
potentially in a cloud location.

CODASPY ’18, March 19-21, 2018, Tempe, AZ, USA

The initial iteration of the provenance history is generated by
the owner of a document when that document is added to the
system. The contract enforces the constraint that granting access
to adding provenance trails for a document is strictly controlled
by the owner of the document. In the current implementation of
SmartProvenance, access rights to a particular document are non-
transferable. In addition to the main methods, Document Tracker
also consists of helper methods for granting the user access to a
document and methods to update the owner of the document. The
Document Tracker rejects any unauthorized calls to the functions.
Every provenance change event has to be approved through a voting
process by the vote contract. The data trails are only logged if they
are approved by the Vote contract.

We chose the voting for verifying the submitted provenance infor-
mation for two reasons: 1) We want to efficiently prevent malicious
changes that obviously violate data use constraints (e.g., not allow
the deletion of a patient record from the drug trial data). 2) We do
not want the verification process to leak any sensitive information.
Unfortunately, verification process could vary in different settings.
For example, for drug trials, main verification process could be to
make sure that no patient is deleted (e.g., to boost the success rate
of the drug) from the data set due to a fatal reaction. Also, if the
verification is done in the contract, we need to do this in a way that
discloses no information (e.g., using zero-knowledge proofs [20]
since contract source code and execution are publicly observable).
To our knowledge, the existing zero-knowledge techniques that
are efficient are not general enough for all verification scenarios
needed for our use case. At the same time, general zero-knowledge
verification techniques are not efficient enough to implement for
provenance capturing [3]. Due to these reasons, we allow each
participant client program to run the verification code automatically
off-the-chain and use on-the-chain contract to vote for or against the
change. Below, we discuss the details of the voting process.

4.1.2 Vote contract. The vote contract implements the voting
protocol. The contract implements two types of voting: simple ma-
jority voting and threshold voting which we discuss in Section 5.
The initiator submits the change in an encrypted form along with
his signature and document id to the vote contract. The vote con-
tract receives the change and after verification generates a log event
to initiate the voting phase for the change. The voting phase time
interval is set as #; (#1 is set to one hour in our experiments) during
which the participant can vote on the change. For each vote that is
submitted, the vote contract verifies whether the vote is valid for
the current voting period. At the end of the voting period, based
on the type of voting process, the vote contract rejects/accepts the
change based on the voting results. The vote contract restarts the
voting phase if the minimum threshold is not satisfied. At the end
of the voting phase, if the decision is to accept the change, vote
contract submits the change to the Document Tracker contract
for generating the provenance event. The vote contract currently
accepts only a single outstanding change for a particular document
for ensuring the continuity of the data provenance chain and con-
sistency. The current vote contract allows users to log provenance
trails if the total count of users of a document is less than three.

CODASPY 18, March 19-21, 2018, Tempe, AZ, USA

4.2 Off-chain module

The off chain module, a JavaScript client, runs on the browser of
each of the user machines. The client acts as an interface between
the user and back-end smart contracts. The client is responsible
for communicating with the smart contract for the storage of the
changes, retrieval of the changes and verifying the validity of the
changes. The client consists of different components such as the
Client Interface module which mainly provides an interface for
the user to interact with various functionalities of the on chain
smart contracts. The Interface module implicitly generates the digi-
tal signature for all the operations that the user performs through
the module. The client contains an event watcher component that
monitors the vote contact for any change events. If a change is
relevant to the current user, the event watch module calls a veri-
fication script and verifies the change. The watcher module uses
a database to keep track of the documents that are relevant to the
current user. In addition to the Javascript clients, SmartProvenance
also has a verification script running at the cloud storage location,
where versions of the documents are stored. The verification script
verifies the validity of each change of a document submitted to the
Document Tracker. Lastly, the client also has a timer module that
is responsible for keeping track of the voting phases. The timer
will trigger the termination of the voting process at the end of the
voting interval.

4.2.1 Verification script: The verification script resides within
the cloud storage of the system. The verification script validates
the data file/document changes that are submitted to the Smart-
Provenance system. The input to the verification script includes
current and previous cryptographic hash of the document (from
the changes submitted to SmartProvenance) and the link to the lat-
est version of the file. The verification script first verifies whether
the hashes submitted to the files are valid. It then compares the
current unconfirmed data file with the last stable version of the file.
If any other changes to the file other than the ones mentioned in
the change request are identified, the verification script notifies the
user of a mismatch. If there are no invalid changes in the file, the
verification script confirms the change as valid to the user. Once
the changes are verified as valid, to prevent further manipulation
of the document version, the verification script restricts the write
access to only the owner of the original document. The verification
script can be customized according to the usage scenario of the Smart-
Provenance system and is developed as a plug-in module. In the
current implementation, we have developed the verification script
based on Google appscript [14] to support Google Drive Storage.
The verification script automates the verification of the changes
without relying on a trusted third party. A well-written verification
script allows for the secure generation, verification and logging of
the provenance trails.

5 VOTING PROCESS

The overall view of the voting process is described in Figure 1.
The voting process starts when the initiator submits a change to
the Vote contract. The initiator client triggers a timer to initiate
the voting phase of the newly submitted change. The vote contract
generates an event which indicates the commencement of the voting
phase for the submitted change. The Event listener module in the

Aravind Ramachandran and Murat Kantarcioglu

3) Start Ti </> I 8)
JS

Timer

2) ch
) Chang

</>) Refun
1) Submit
— — Js 4) Generate
& Change Change Event

Initiator Js_Module

Vote Cpntract

9) Record
7) Cast Votes——— (/ > 10) C change:

.I s “ Voter
5)Verify change l

15_Module

~<+———6) Notify Result— </>
Js

Verify Document_Track

Voters

Figure 1: Voting procedure for a document change.

client applications reads the newly generated vote event. The client
application verifies if it is a stakeholder in the current document
change event. It then calls the verification script residing within the
cloud along with the links to the current and previous versions of
the file and the file hashes. The call to verification process occurs in
every node based on the voting protocol policy. If the verification
script returns as true then the client application notifies the user of
the result and casts its vote automatically on the decision to accept
or reject the changes. The vote contract on receiving the vote from a
client application records the user decision. ! The timer module will
terminate the vote contract at the end of the voting period. The vote
contract counts both for and against votes and rejects the change
if the majority have voted against the change. If the change is
accepted, the deposit by the initiator is refunded back. If the change
is rejected then, the deposit is divided among the participants of
the voting phase. This way we incentivize truthful behavior by
the participants. If the majority is to accept the vote then the vote
contracts submits the changes to the Document Tracker contract
for logging.

In our current implementation of SmartProvenance, we have
implemented two types voting protocols: simple majority voting
and randomized voting.

5.1 Randomized Threshold Voting

Every client voting for each and every change is not efficient for
systems that contain a large number of changes and users. For such
scenarios, we propose randomized threshold voting. In randomized
threshold voting, the contract requires that a minimum percentage
of votes accept or reject the change. Suppose the document has n
users, to accept or reject a change, the vote contract threshold is
s. To ensure that each voting phase for a change receives s votes,
the contract tries to get expectedly ¢ votes for t >s. The threshold ¢
ensures that the minimum number of votes s is received for each
change.

!We would like to stress that in our case, this entire voting process is automated using
the verification script without any user manual input.

SmartProvenance: A Distributed, Blockchain Based Data Provenance System

To determine whether to take part in change voting phase, each
client generates a random number based on the formula:

Ks = Hash(Bno, ETxt, Dif f,Glim, Addr) mod n

In the formula, Ks is the random number generated by the client by
hashing Bno - the current block number, Etext - the encrypted text
in the change event, Diff - the current gas limit and the Addr - the
initiator’s address. If the generated number is below the threshold
number ¢ set by the vote contract (i.e. Ks < t), the client votes based
on the result of the verification script. Once a vote is submitted,
the vote contract generates the random number for each vote in a
similar manner and verifies that the submitted vote is legitimate.

In this technique, the voting for the change is based on secure
pseudo-random numbers; and it is not feasible to know which
clients vote on which changes since the inputs to the hash function
differ for each vote almost in a random manner. At the end of
a voting period, if the vote contract finds that the total number
of votes is below the threshold s, the vote contract restart the
voting process. The probability of a restart event can be bounded
by choosing appropriate ¢ and s values as described in our detailed
paper [29]. If after a predefined maximum number of restarts, the
required number of votes are not received, the change is rejected
and the deposit is refunded to the initiator of the current change.
We can set the system parameters t and s in such a way that this is
very unlikely.

6 SYSTEM ANALYSIS

In this section, we analyze the security and privacy aspects of our
SmartProvenance system. Specifically, we discuss how SmartProve-
nance system handles attacks from the two type of adversaries
discussed in Section 2.3.

6.1 Security Analysis

An external adversary can try to attack the current system by sub-
mitting an invalid change request for a particular document ID. The
SmartProvenance contract would stop any such attempts by enforc-
ing access control policies on documents. The Document Tracker
contract will only accept change requests from users who have been
granted access by the owner of the document. All other change
requests are simply rejected by the contract. The Document Tracker
also penalizes the external adversary by withholding the deposit
amount for the change for the attack attempt. Document Tracker
prevents replay attack by keeping track of the latest change times-
tamp for a particular document. Any message carrying timestamp
older than the latest timestamp for that document is ignored.

An internal user can be the owner of the document or one of the
users who has been granted access to the document by the owner.
An internal adversary who is not the owner of the document can
try and corrupt the data provenance trails by submitting defec-
tive changes. Since SmartProvenance system requires each of the
changes to be approved by a minimum number of users, this attack
from the internal adversary succeeds only if he can control more
than half of the total number of users allowed for the document.
The randomized threshold voting further ensures that the adversary
cannot know in advance who among all the voters can take part in
the voting for a particular change, making it difficult to mount the

CODASPY ’18, March 19-21, 2018, Tempe, AZ, USA

attack. The internal adversary who is an owner can corrupt the sys-
tem if he colludes with other stakeholders and votes for the change.
The owner is the only user who can grant access, the system can
be at a disadvantage if the owner selects a group of users who are
loyal to him and corrupts the provenance trail. Although this type
of attack may be successful, it still leaves a traceable trail on the
blockchain that could be used to detect the attack.

6.2 Privacy Analysis

The privacy protection for the provenance data trail is achieved by
the use of hashing and encryption. An external user can infer only
the document id and the number of changes that are made to a par-
ticular document id by looking at the event logs. Each change event
encrypts the payload of the event so that all an external adversary
could get is the document id, the ciphertext, and the signature. The
link to the cloud location where the actual file is encrypted. The
other information that an external user can deduce from watching
the contract transaction trails are to see which users are associated
with a particular document id. This information is deducible by
observing iterations of the voting contract. The Ethereum platform
provides anonymization of users through the use of random public
addresses. The users of SmartProvenance do not reveal their identity
in the environment but instead use public addresses to perform
operations in the system. In SmartProvenance, only the file owner
will see the document user. An adversary observing multiple voting
iterations could at most deduce the public addresses associated with
each document.

In SmartProvenance system, each change in the document is
represented as a separate record. In the current system, we take
each change as a standalone change and do not allow multiple
outstanding changes to the same document. This can be restrictive
in certain use cases. The system could be modified to accept non-
conflicting changes in different parts of the tracked document. The
system could accept changes to the document as long as they are
non-conflicting, thereby increasing the concurrency. The above
modification may involve adding an extra step to the verification
script to check for non-conflicting changes.

7 EXPERIMENTAL EVALUATION

To evaluate the SmartProvenance system, we test it on two real-life
scenarios and calculate the average cost for each of the individual
operations of the smart contract. In both scenarios, we find that
SmartProvenance system performs at a constant cost for individual
operations and within a reasonable overhead. We provide the details
of one of the use cases below. The details of the other cases can be
found in our extended paper [29].

For all use cases, we use the following evaluation setup: the client
applications implemented using Meteor]S ran in a laptop (Core
i7 2.4GHZ) and a desktop computer (Core i7 3.40GHZ) running
Ubuntu 16.04.2 LTS. The smart contracts developed using Solidity
language ran on Ethereum Ropsten Testnet?. For all scenarios, we
simulate the tests for a setting where we have 100 users for each
of the document/data file. For the cloud-based storage, we used
Google Drive and the verification scripts were developed using
Google AppScript.

Zhttps://ropsten.etherscan.io/

CODASPY 18, March 19-21, 2018, Tempe, AZ, USA

7.1 Clinical Drug trial

As the first use case, we consider the scenario of a clinical trial [10]
of an experimental drug. In phase 3 of the drug trial process, the
drug is tested with 300—1000 patients. The objective of the trial
is to find the side effects of varying dosages on the patients. The
drug trials are conducted by various doctors in various locations
and each of the results is recorded in a common document. Each
of the experiment group updates the same document every month
for a twelve month period. In the research setting, some of the
patients may show an adverse reaction to the drug. Researchers
with a vested interest may try to remove those records that would
show the side effects of the drug, and successive iterations of the
same document will be missing records that would adversely affect
the trustworthiness of the trails. To avoid the omission of records,
the verification process for each change iteration should ensure
that the original patient set is maintained.

7.1.1 Add Document. The Add Document function is used to
add a document to the system for the purpose of maintaining its
provenance. The owner of the document could be the head physi-
cian who initiates the whole process. The owner generates the
initial form of the file that includes the entire initial set of patient
details and initial drug dosage and adds it to the contract. The Add
Document functions generate a unique document id for each file
added. For the drug trials scenario, we need to add only a single
file. The average gas cost per file added is 139552. Please note that
in our setting, SmartProvenance keeps fixed size provenance records
irrespective of the original data file size.

7.1.2 Add User. The Add User function deals with granting ac-
cess to users for a document. The user who creates a particular
document is recorded as the owner of the contract. Access to a par-
ticular contract can only be granted by the owner of that contract.
Figure 2 gives the gas used per user added for one document where
each transaction is the addition of a new user. The average gas used
per transactions is 90559. The user details are stored as the hash of
the user address. The spikes in the figure 2 represent the difference
in the hashing requirements for the inputs.

7.1.3 Initiate Change. The Initiate Change function deals with
triggering the voting process for logging a particular change. The
Initiate Change requires the initiator of the change to deposit an
amount with the contract while calling the contract. The Initiate
Change function is called in the current scenario at the end of every
month by the doctors to record the side effects (if any) of the current
dosage. The average gas used for the changes is 731768. Figure 2
gives the gas distribution per initiation of voting phase for different
transactions.

7.1.4 Voting phase. Once the change has been initiated, the
client programs running in the voting quorum will verify the
changes and cast their votes. The vote of each of the participant
is recorded by the smart contract and tallied up. The average gas
used during this process is 89176. This is due to the initialization
that occurs at the start of the voting intervals.

3In our experiments, we choose only this constraint for the automatic verification
process. Other constraints could be added for different scenarios.

Aravind Ramachandran and Murat Kantarcioglu

7.1.5 Termination. The result of the voting process determines
whether to accept or reject the changes. On rejection of a change,
the voters who verified and voted are awarded the deposit amount
of the initiator. On acceptance of the change, the change is recorded
in the event log of the Document Track contract and the deposit is
refunded to the initiator of the change. In Figure 2, we can see that
there are two large spikes. These are the cases in which the changes
are rejected after the voting process. The gas used for these are
more because all the voters are awarded a part of the deposit in the
case of a rejection. The average gas used for termination is 249812.

7.1.6 Verification Script: In the drug trial scenario, the verifica-
tion script verifies if the same set of patients given in the original
trials are maintained across the various iterations of the data collec-
tion phase. The client initiates the verification script by providing
it with the link to the current file version and hashes submitted
with the change. The verification script generates its own hashes
and compares with the submitted hashes. The script then compares
patient identification columns with the previous files to ensure that
none of the original patients have been omitted from the currently
submitted version. The verification script then notifies the client
of the result and votes accordingly. In the drug trials scenario, the
verification script checks if all patient records are retained in sub-
sequent iterations. The run times of the verification script which
depends on the data file size and the verification complexity, for
data files that contain 1000 to 5000 patients, the verification runtime
vary from 7 to 31 secs.

7.2 Operation Cost

By observing the system contract executions in the above scenarios,
we see that for an individual function such as add user or add
document, the gas used per transaction remains almost constant.
The cumulative gas used for any individual function is a nearly
linear function (e.g., as shown in Figure 2 for vote function).

The gas usage is calculated at an average of 0.00000002 ethers
per gas used. At the time of experimentation, a single ether cost is
90 US dollars. The Table 1 shows the average gas used for various
operations of the SmartProvenance system. As the results indicate
most operations can be executed with relatively little cost.

Table 1: Cost of operations in the SmartProvenance System.

Operation Avg gas spent cost (USD)
Vote 89176.33 0.1605173
Add User 90559 0.1630062
Add Document 139552 0.2511936
Record Change 249812 0.4496616
Initiate Change 731351.5 1.3164327

7.3 Contract Execution Duration

The time taken to perform each of the operations in the system is
represented in the Table 2. We can see that all the operations take
near constant time to perform. The time taken for each operation
is reported as the average time taken per thousand operations.

SmartProvenance: A Distributed, Blockchain Based Data Provenance System

5
7380

CODASPY ’18, March 19-21, 2018, Tempe, AZ, USA

Gas used per Changes

o x10% Gas used per Users Added

Gas used
© ©
o © o
2 o &
G 8 &

x10° Gas used per Termination

8 - 7-36

0 2
3 2734
E %]
2t 8
T
o, 7.32

0 7.3

1 2 3 4 5 6 7 8 9 10 11
Transaction Count

o
N

Transaction Count

6 8 10 0 10 20 30 40 50
Transaction Count

Figure 2: Gas used for various operations.

The execution time of each of the above operations depends on

Table 2: Time for operations in the SmartProvenance System.

Operation Time Taken (ms)
Vote 829
Initiate Change 858
Add User 877
Add Document 926
Record Change 950

the network speed and the speed of mining of the blocks, but in
long run, these times remain near constant and take less than a
second in all of the usage scenarios. The experiments show that the
SmartProvenance generates and stores provenance data in a secure
trusted manner with moderate overhead.

8 RELATED WORK

Recently there have been several research studies that leverage
Blockchain as a platform for building trusted systems. Below, we
summarize this work and discuss its relationship to our work.

Access control: In [18], authors explain the use of Blockchain as a
trans-organizational authentication system. The Medrec system [1]
implements access control for medical records across medical in-
stitutions through the usage of the public blockchain. Fair access
system [27] is a decentralized access control system for the Internet
of things devices using blockchain technology. In our SmartProve-
nance system, we also implement access control policies, but our
focus is in the capturing of provenance data.

Trusted Authority system: The legal aspect of using blockchain
as a verifiable trusted source was further expanded upon by the
Common Accords Group [2, 12]. These work describe leveraging
data stored in a public blockchain as a verifiable evidence in a court
of law. Namecoin [8] system uses the blockchain technology as a
trusted source for the Domain Name System (DNS). Our SmartProve-
nance system eliminates the need for storing data on transactions
by using the event logs of the smart contract to store the prove-
nance trails. The smart contracts on top of the Ethereum platform
act as a decentralized trusted authority regarding all provenance
trails stored. The provenance trails generated by SmartProvenance
is trustworthy as they are verified using the verification policy and
stored. SmartProvenance, therefore, acts as a decentralized trust-
based system for data provenance.

Privacy preserving blockchain systems: The DECENT system [22]
uses the blockchain along with the smart contracts to implement
key management services. It implements the idea of secret shar-
ing to securely share keys in a public environment. The Hawk
system [20] implements the concept of zero-knowledge proofs com-
bined with encryption to implement privacy preserving blockchain
systems. The Hawk system uses two components: an on-chain
component which uses smart contracts and zero-knowledge proofs
to facilitate betting protocols and the off-chain component which
generates zero-knowledge proofs for the system. The Hawk system
shows how secure computations can be implemented on top of a
public system such as the blockchain.

The use of secret sharing techniques for protecting sensitive
information is further discussed in [17]. Compared to these works,
the SmartProvenance system utilizes encryption and hashing to
preserve the privacy of the data stored in the public Ethereum
blockchain and secure communication channels between the smart
contract and client machines to preserve the privacy. For efficiency,
verification of the captured provenance data is done off-the-chain.

The common security vulnerabilities in the smart contracts are
discussed in [19]. This work illustrates a number of security issues
in smart contracts such as call stack bug, block hash bug, and min-
ers withholding the addition of blocks to gain an unfair advantage.
This work further discusses how to avoid these pitfalls by including
additional access verification and cryptographic primitives like en-
cryption and hashing. Compared to these works, SmartProvenance
implements digital signatures to avoid malicious logging of prove-
nance data. It uses an encrypted form of the provenance trails to
avoid revealing details such as the location of the files and the user
access information. SmartProvenance further restricts the access to
methods based on checks implemented on the user address.

Data provenance: Leveraging blockchain as a data provenance
tracker was first discussed by the Project Provenance [23]. In this
work, blockchain transactions are used to store provenance details
of food products from production to the consumer. In addition, in
[15], the use of blockchain as provenance platform is presented as
one of the four breakout cases of the blockchain platform. The use
of Bitcoin as a data provenance system for research scenario was
further explored in [9]. The author suggested the idea of storing the
research objectives as an encoded file in the data fields of Bitcoin
transactions. Compared to these works, our the SmartProvenance
system adopts the immutability of the blockchain environment and
implements a full stack privacy-preserving, verified data prove-
nance store with access control policies. The provenance chains
that are generated by the SmartProvenance system are stored as

CODASPY 18, March 19-21, 2018, Tempe, AZ, USA

event logs thereby saving costs on storage. The system facilitates
the verification of these provenance events by any authorized users.
SmartProvenance provides a platform to implement custom verifi-
cation scripts suited for the application area. The system ensures
privacy by using public key encryption and preserves integrity by
the use of digital signatures.

The ProvChain [21] system provides a data provenance system
based on Blockchain technology. The ProvChain system uses mon-
itor programs called “hooks” to track the changes that occur in
the cloud storage system and records each and generates events
corresponding to the actions of the users. The user events thus
recorded are then stored on the blockchain as transactions. The
verification process is achieved by an external entity known as the
auditor. The auditor generates transaction receipts using Tieron
API [7]. The Provchain system verifies the changes after the in-
formation is logged on to the blockchain. The SmartProvenance
differs from Provchain by implementing automated verification
scripts and rejecting the invalid changes. The change hash-chain
generated by the SmartProvenance records only the changes that are
verified by the verification script. This guarantees that the changed
document is always valid and prevents any chance of collusion be-
tween the auditor and the stakeholders. Another major difference
compared to Provchain is that SmartProvenance implements incen-
tivized voting using smart contracts to penalize the users who try
to log invalid changes to the system. The use of randomized voting
reduces the centralization of the verification process. Therefore,
there is no need for a physical verifier as the verification script
verifies the changes before voting on the changes. The advantage
of developing verification script is that a verification script for a
scenario could be reused by similar applications thereby reducing
the cost of development.

9 CONCLUSION

The SmartProvenance is a Blockchain based system that provides
access control based privacy-preserving data provenance trails. In
the SmartProvenance system, an authorized user can verify the
changes that are made to any data file. It also provides a proof of
change with the use of digital signatures and timestamps. The sys-
tem ensures that the change logs in the blockchain environment are
only accessed by the authorized users with appropriate keys. The
SmartProvenance system further enhances the trustworthiness of
the data trails by implementing randomized voting for the captured
change trails and any deviation is punished by a monetary penalty
using smart contracts. The evaluation of the system based on two
real-life scenarios shows that individual operations of the system
run with acceptable cost in near constant time.

10 ACKNOWLEDGEMENT

The research reported herein was supported in part by NIH award
1R01HG006844, NSF awards CNS-1111529, CICI-1547324, and IIS-
1633331 and ARO award W911NF-17-1-0356.

REFERENCES

[1] Thiago Vieira Andrew Lippman Ariel Ekblaw, Asaf Azaria. 2016. MedRec: Medical
Data Management on the Blockchain. (2016). version: 57e013615dbf3f3300152554.

[2]

—_——
&2

=
S

[
-

=
)

(13]

[u—
]

(16]

[17

(18

(19]

[21

"~
2,

[30

Aravind Ramachandran and Murat Kantarcioglu

David Bollier. 2015. Reinventing Law for the Commons. (2015). http://www.

commonaccord.org/
Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. 2011.

Limits on the Power of Zero-Knowledge Proofs in Cryptographic Constructions.
In Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011,
Providence, RI, USA, March 28-30, 2011. Proceedings. 559-578. https://doi.org/10.
1007/978-3-642-19571-6_34

Jonathan Brown. 2015. Storing compressed text in Ethereum transaction logs.
(2015). http://jonathanpatrick.me/blog/ethereum-compressed-text

Vitalik Buterin. 2015. A Next-Generation Smart Contract and Decentralized
Application Platform. (2015). September.

Tim Clark, Paolo Ciccarese, and Carole A. Goble. 2013. Micropublications: a
Semantic Model for Claims, Evidence, Arguments and Annotations in Biomedical
Communications. CoRR abs/1305.3506 (2013). http://arxiv.org/abs/1305.3506
Tierion coporation. 2017. Tierion APL (2017). https://tierion.com/
Vincent Durham. 2010. NAMECOIN. https://namecoin.org/.

The Economist. 2016. Better with bitcoin.
http://www.economist.com/news/science-and-technology/21699099-
blockchain-technology-could-improve-reliability-medical-trials-better.
US Food and Drug Administration. 2017. Clinical Research. https://www.fda.gov/
ForPatients/Approvals/Drugs/ucm405622.htm.

Buyse M George SL. 2015. Data fraud in clinical trials. PMC 5, 2 (2015), 161-173.
https://doi.org/10.4155/cli

Bela Gipp, Jagrut Kosti, and Corinna Breitinger. 2016. Securing Video Integrity
Using Decentralized Trusted Timestamping on the Blockchain. In Proceedings
of the 10th Mediterranean Conference on Information Systems (MCIS). Paphos,
Cyprus.

Oded Goldreich. 2004. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA.

Google. 2017. Google Appscript. https://developers.google.com/apps-script/.
Gideon Greenspan. 2016. Four Genuine Blockchain Use Cases. (May 2016).
http://www.coindesk.com/four-genuine-blockchain-use-cases/

R. R. Downs R. Duerr J. C. Goldstein M. A. Parsons Hills, D. J. and H. K.
Ramapriyan. 2015. The importance of data set provenance for science. (2015).
version: doi:10.1029/2015E0040557.

Roman JagomAdgis, Peeter Laud, and Alisa Pankova. 2015. Preprocessing-Based
Verification of Multiparty Protocols with Honest Majority. Cryptology ePrint
Archive, Report 2015/674. (2015). http://eprint.iacr.org/2015/674.

Cruz Jason, Paul and Kaji Yuichi. 2015. The Bitcoin Network as Platform for
Trans-Organizational Attribute Authentication. IPST SIG Notes 2015, 12 (feb 2015),
1-6. http://ci.nii.ac.jp/naid/110009877764/en/

Ahmed Kosba Andrew Miller Kevin Delmolino, Mitchell Arnett and Elaine Shi.
2015. Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights
from a Cryptocurrency Lab. Cryptology ePrint Archive, Report 2015/460. (2015).
http://eprint.iacr.org/2015/460.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-
manthou. 2015. Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts. Cryptology ePrint Archive, Report 2015/675. (2015).
http://eprint.iacr.org/2015/675.

Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin Kwiat,
and Laurent Njilla. 2017. ProvChain: A Blockchain-based Data Provenance
Architecture in Cloud Environment with Enhanced Privacy and Availability.
In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid ’17). IEEE Press, Piscataway, NJ, USA, 468-477.
https://doi.org/10.1109/CCGRID.2017.8

Peter Linder. 2016. DEcryption Contract ENforcement Tool (DECENT): A Practi-
cal Alternative to Government Decryption Backdoors. Cryptology ePrint Archive,
Report 2016/245. (2016). http://eprint.iacr.org/2016/245.

Project Provenance Ltd. 2015. Blockchain: the solution for transparency in
product supply chains. (2015). https://www.provenance.org/whitepaper
MeteorJs. 2016. (May 2016). https://www.meteor.com/

MongoDB. 2017. MongoDB. (Jan. 2017). https://www.mongodb.com/

Open Provenance model 2007. Open Provenance Model. Open Provenance model.
http://openprovenance.org/.

Aafaf Ouaddah, Anas Abou El Kalam, and Abdellah Ait Ouahman. 2016. FairAc-
cess: a new Blockchain-based access control framework for the Internet of
Things. Security and Communication Networks 9, 18 (2016), 5943-5964. https:
//doi.org/10.1002/sec.1748

Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, Gregory S. Couch,
Daniel M. Greenblatt, Elaine C. Meng, and Thomas E. Ferrin. 2004. UCSF Chimera
- A visualization system for exploratory research and analysis. Journal of Com-
putational Chemistry 25, 13 (2004), 1605-1612. https://doi.org/10.1002/jcc.20084
Aravind Ramachandran and Murat Kantarcioglu. 2017. Using Blockchain and
smart contracts for secure data provenance management. (2017). https://arxiv.
org/abs/1709.10000

Gavin Wood. 2017. ETHEREUM: A secure decentralized generalized transaction
ledger. (2017). http://gavwood.com/paper.pdf

(2016).

http://www.commonaccord.org/
http://www.commonaccord.org/
https://doi.org/10.1007/978-3-642-19571-6_34
https://doi.org/10.1007/978-3-642-19571-6_34
http://jonathanpatrick.me/blog/ethereum-compressed-text
http://arxiv.org/abs/1305.3506
https://tierion.com/
https://namecoin.org/
https://www.fda.gov/ForPatients/Approvals/Drugs/ucm405622.htm
https://www.fda.gov/ForPatients/Approvals/Drugs/ucm405622.htm
https://doi.org/10.4155/cli
https://developers.google.com/apps-script/
http://www.coindesk.com/four-genuine-blockchain-use-cases/
http://eprint.iacr.org/2015/674
http://ci.nii.ac.jp/naid/110009877764/en/
http://eprint.iacr.org/2015/460
http://eprint.iacr.org/2015/675
https://doi.org/10.1109/CCGRID.2017.8
http://eprint.iacr.org/2016/245
https://www.provenance.org/whitepaper
https://www.meteor.com/
https://www.mongodb.com/
http://openprovenance.org/
https://doi.org/10.1002/sec.1748
https://doi.org/10.1002/sec.1748
https://doi.org/10.1002/jcc.20084
https://arxiv.org/abs/1709.10000
https://arxiv.org/abs/1709.10000
http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	1.1 Overview of Our Contributions

	2 Background
	2.1 Ethereum
	2.2 Provenance Model
	2.3 Threat Model

	3 System Overview
	4 System Details
	4.1 On-chain module
	4.2 Off-chain module

	5 Voting Process
	5.1 Randomized Threshold Voting

	6 System Analysis
	6.1 Security Analysis
	6.2 Privacy Analysis

	7 Experimental Evaluation
	7.1 Clinical Drug trial
	7.2 Operation Cost
	7.3 Contract Execution Duration

	8 Related Work
	9 Conclusion
	10 Acknowledgement
	References

