
Supporting GDPR Requirements
and Integrity in

Distributed Ledger Systems

Rick Kuhn

NIST Computer Security Division

What is the problem?
• Blockchain has been defined as "an open, distributed ledger that can record

transactions between two parties efficiently and in a verifiable and
permanent way".

• The permanence/immutability property that makes blockchain
technology useful also leads to difficulty in supporting privacy
requirements

• European Union General Data Protection Regulation (GDPR) requires that all
information related to a particular person can be deleted at that person's
request
• personal data, defined as "any information concerning an identified or identifiable

natural person" - data for which blockchains are designed to be used
• "Personal data which have undergone pseudonymisation, which could be attributed

to a natural person by the use of additional information should be considered to be
information on an identifiable natural person."

Structure of a Traditional Blockchain

6

Why is GDPR deletion requirement a problem for
blockchains?
 Conventional distributed ledger

blockchain – change to one block
changes hashes of all; provides
integrity protection

3

 Hashes provide assurance that
information in every other block is
unchanged if one block is modified

 If we had to delete a block, hash
values for others are no longer valid

 Don’t want to create a new chain

What are ways of dealing with this problem?

•Don’t put personal information on blockchain
• Pseudo-anonymized data are still considered personal
• Even if not directly tied to a person – dynamic IP address can

be considered personal if it can be indirectly tied to an
individual

• Encrypt data and destroy key to delete
• Data must be secure for decades
• Cannot be sure that future developments in crypto will not

reveal it – e.g. quantum computing puts current public key
systems at risk

What are the constraints and assumptions?

•Hash integrity protection must not be
disrupted for blocks not deleted

•Deletions will be relatively rare

•Ensure auditability and accountability

•Application to permissioned/private
distributed ledger systems

New data structure solution: a datablock matrix

 A data structure that provides
integrity assurance using hash-
linked records while also
allowing the deletion of records

2

• Suggested use for
private/permissioned distributed
ledger systems

• => each block within the matrix
is protected by two hashes

• Stores hashes of each row and
column

How does this work?

 Suppose we want to delete
block 12

2

0 1 2 3 4

0  1 3 7 13 H0,-

1 2  5 9 15 H1,-

2 4 6  11 17 H2,-

3 8 10 12  19 H3,-

4 14 16 18 20  H4,-

H-,0 H-,1 H-,2 H-,3 H-,4 etc.

• disrupts the hash values of H3,-

for row 3 and H-,2 and column 2

• blocks of row 3 are included in
the hashes for columns 0, 1, 3,
and 4

• blocks of column 2 are included
in the hashes for rows 0, 1, 2,
and 4

Datablock Matrix Population Algorithm

 Block ordering provides desirable
properties

3

 Algorithm

• Basic algorithm is simple, many
variations possible

• Implemented as Java code
• Github project

Data Structure Properties
• Balance: upper half (above diagonal)

contains at most one additional cell
more than the lower half.

• Hash sequence length: number of
blocks in a row or column hash
proportional to 𝑁 for a matrix with N
blocks, by the balance property.

• Number of blocks: The total number of
data blocks in the matrix is 𝑁2 − 𝑁
since the diagonal is null.

• Block dispersal: No consecutive blocks
appear in the same row or column

3

Consecutive block deletion

3

Vs.

• Algorithm keeps main diagonal
null

• Allows deletion of two
consecutive blocks without
disrupting hashes

• Example – deleting blocks 7 and
8 without null diagonal would
lose hash integrity protection for
blocks 4 and 9

Applying Block Matrices to Blockchains

 Similar structure and
security as a blockchain

 capability of deleting or
modifying certain parts of a
transaction or block

 Same transaction model,
same cryptographic
key/address model

 Implemented in open source
code

7

Empty Block 1 Block 3 Block 7
Block
13

Block 2 Empty Block 5 Block 9
Block
15

Block 4 Block 6 Empty
Block
11

Block
17

Block 8
Block
10

Block
12

Empty
Block
19

Block
14

Block
16

Block
18

Block
20

Empty

Row 0
Hash

Row 1
Hash

Row 2
Hash

Row 3
Hash

Row 4
Hash

Col 0
Hash

Col 1
Hash

Col 2
Hash

Col 3
Hash

Col 4
Hash

Implementation by Arsen
Klyuev, Johns Hopkins Univ

13

Block 2

Transactions

Timestamp

Hash of Block

Transaction 1

Transaction 2

Transaction 1

Hash of Transaction

Sender Public Key

Recipient Public Key

Value

Info

Transaction Inputs

Transaction Outputs

Genesis
Block

Etc.

Block 2 Etc..

Etc. Etc.

Structure of the Datablock
Matrix “blockchain”

Java BlockMatrix Package

• Basic proof-of-concept Java package for
incorporation into other code

• Not a full working peer-to-peer blockchain
• SHA-256 hashing
• Elliptic-Curve Key pairs

import blockmatrix.*;

public class Main {

public static void main(String[] args) {

BlockMatrix bm = new BlockMatrix(5);

bm.setUpSecurity();

//Create wallets:

Wallet walletA = new Wallet();

bm.generate(walletA, 200f);

Implementation by Arsen Klyuev, JHU

An example of use

11

//testing

Wallet walletB = new Wallet();

Block block2 = new Block();

System.out.println("\nWalletA's balance is: " + walletA.getBalance());

System.out.println("\nWalletA is sending 40 coins to WalletB...");

block2.addTransaction(walletA.sendFunds(walletB.getPublicKey(), 40f, “This is for the

bananas!"));

bm.addBlock(block2);

System.out.println("\nWalletA's balance is: " + walletA.getBalance());

System.out.println("WalletB's balance is: " + walletB.getBalance());

• Create wallets: Wallet walletB = new Wallet();
• Create Blocks: Block block2 = new Block();
• Create transactions

• Transaction tr =

walletA.sendFunds(walletB.getPublicKey(), 40f,

“This is for the bananas!");

• Add the transactions to blocks: block2.addTransaction(tr);
• Add the blocks to the block matrix bm.addBlock(block2);

• Clearing info in blocks: bm.clearInfoInTransaction(2, 0);

16

BlockMatrix bm = new BlockMatrix(3);

bm.setUpSecurity();

Wallet walletA = new Wallet();

bm.generate(walletA, 200f);

Row
Hashes

Column
Hashes

walletA

Balance: 0

Genesis Transaction

Hash: d6nt..

Sender: Coinbase

Recipient: walletA

Value: 200f

Info: null

Inputs: null

Outputs: …

Balance: 200

Genesis

Transaction

099a..

099a..
Genesis

Block

e3b0.. e3b0.. e3b0..

e3b0..

e3b0..

e3b0..

Genesis
Block

17

Wallet walletB = new Wallet();

Block block2 = new Block();

Transaction tr =

walletA.sendFunds(walletB.getPublicKey(), 40f, “This

is for the bananas!");

block2.addTransaction(tr);

Bm.addBlock(block2);

Row
Hashes

Column
Hashes

walletA

tr

Hash: a4sc…

Sender: walletA

Recipient: walletB

Value: 40f

Info: “This is for the...!”

Inputs: …

Outputs: …

Balance: 200

099a..

099a..
Genesis

Block

e3b0.. e3b0..

e3b0..

e3b0..

Genesis
Block

walletB

Balance: 0

block2

tr

block2

Balance:160 Balance: 40

18

Wallet walletB = new Wallet();

Block block2 = new Block();

Transaction tr =

walletA.sendFunds(walletB.getPublicKey(), 40f, “This

is for the bananas!");

block2.addTransaction(tr);

bm.addBlock(block2);

bm.clearInfoInTransaction(2, 0);

Row
Hashes

Column
Hashes

walletA

tr

Hash: a4sc…

Sender: walletA

Recipient: walletB

Value: 40f

Info: “This is for the…!”

Inputs: …

Outputs: …

Balance: 200

099a..

099a..
Genesis

Block

719c.. e3b0..

e3b0..

719c..

Genesis
Block

walletB

Balance: 0

block2

tr

block2

Hash: 2he1..

19

Wallet walletB = new Wallet();

Block block2 = new Block();

Transaction tr =

walletA.sendFunds(walletB.getPublicKey(), 40f, “This

is for the bananas!");

block2.addTransaction(tr);

bm.addBlock(block2);

bm.clearInfoInTransaction(2, 0);

Row
Hashes

Column
Hashes

walletA

tr

Hash: a4sc…

Sender: walletA

Recipient: walletB

Value: 40f

Info: “CLEARED”

Inputs: …

Outputs: …

Balance: 200

099a..

099a..
Genesis

Block

719c.. e3b0..

e3b0..

719c..

Genesis
Block

walletB

Balance: 0

block2

tr

block2

Hash: 2he1..

20

Wallet walletB = new Wallet();

Block block2 = new Block();

Transaction tr =

walletA.sendFunds(walletB.getPublicKey(), 40f, “This

is for the bananas!");

block2.addTransaction(tr);

bm.addBlock(block2);

bm.clearInfoInTransaction(2, 0);

Row
Hashes

Column
Hashes

walletA

tr

Hash: 34ds…

Sender: walletA

Recipient: walletB

Value: 40f

Info: “CLEARED”

Inputs: …

Outputs: …

Balance: 200

099a..

099a..
Genesis

Block

719c.. e3b0..

e3b0..

719c..

Genesis
Block

walletB

Balance: 0

block2

tr

block2

Hash: 2he1..

21

Wallet walletB = new Wallet();

Block block2 = new Block();

Transaction tr =

walletA.sendFunds(walletB.getPublicKey(), 40f, “This

is for the bananas!");

block2.addTransaction(tr);

bm.addBlock(block2);

bm.clearInfoInTransaction(2, 0);

Row
Hashes

Column
Hashes

walletA

tr

Hash: 34ds…

Sender: walletA

Recipient: walletB

Value: 40f

Info: “CLEARED”

Inputs: …

Outputs: …

Balance: 200

099a..

099a..
Genesis

Block

719c.. e3b0..

e3b0..

719c..

Genesis
Block

walletB

Balance: 0

block2

tr

block2

Hash: 84g5..

22

Wallet walletB = new Wallet();

Block block2 = new Block();

Transaction tr =

walletA.sendFunds(walletB.getPublicKey(), 40f, “This

is for the bananas!");

block2.addTransaction(tr);

bm.addBlock(block2);

bm.clearInfoInTransaction(2, 0);

Row
Hashes

Column
Hashes

walletA

tr

Hash: 34ds…

Sender: walletA

Recipient: walletB

Value: 40f

Info: “CLEARED”

Inputs: …

Outputs: …

Balance: 200

099a..

099a..
Genesis

Block

f84w.. e3b0..

e3b0..

f84w..

Genesis
Block

walletB

Balance: 0

block2

tr

block2

Hash: 84g5..

Ensuring Matrix Validity
 isMatrixValid() method

 Encompassing function which checks if blockmatrix is secure

 Features:

 Checks every block and ensures its hash is what it should be

 Checks every row and column and ensures its hash is what it should be

 Checks every transaction in each block and makes sure that

 The transactions signature is valid

 Inputs are equal to outputs in the transaction

 Etc.

 Checks that all deletions/modifications of data changed only one row
and column hash, and the rest are unchanged

23

Future of Datablock Matrix

 Consider proof of work or alternate consensus schemes
 Web tool to easily see structure of your DatablockMatrix
 Extension to peer-to-peer system
 Creation of generic DatablockMatrix data structure which

can be used for any purpose
 Implementation in existing blockchains

 Multichain
 Hyperledger Fabric

 Consider higher dimension structures – can be done, but
is there any value?

13

Acknowledgements

 Arsen Klyuev, Johns Hopkins Univ

 Dylan Yaga, NIST

 Gokhan Kocak, Asena, Inc.

More information:

NIST publication
• Kuhn, D. R. (2018). A Data Structure for Integrity Protection with Erasure

Capability
• https://csrc.nist.gov/publications/detail/white-paper/2018/05/31/data-

structure-for-integrity-protection-with-erasure-capability/draft

Github project:
• https://github.com/usnistgov/blockmatrix

https://csrc.nist.gov/publications/detail/white-paper/2018/05/31/data-structure-for-integrity-protection-with-erasure-capability/draft

