

## **Blockchain Certification / Conformance**

Fred Douglis, Angelos Stavrou



> New Blockchain technologies are constantly being developed

- Hundreds of new Blockchain & Crypto Currency designs are in progress
- How are existing technologies "fit" in the existing design space?
- What are the trade-offs between different Blockchain technologies?
- Are there any Soft or Hard Limitations?
- > New Application Areas emerge ambiguity persists
  - Is Blockchain a good fit for MY Use Case or Application?
  - Can we adopt existing technologies or do we need new designs?
  - > What are the costs involved and return-on-investment for Blockchain adoption?
  - Is there Interoperability and Governance between Blockchain Technologies?



> New Blockchain technologies are constantly being developed

- > Hundreds of new Blockchain & Crypto Currency designs are in progress
- > How are existing technologies "fit" in the existing design space?
- What are the trade-offs between different Blockchain technologies? Lack of Conformance and Design Space Clarity is Inhibiting Blockchain Adoption and Future Advances
- > Is Blockchain a good fit for this application?
- > Can we adopt existing technologies or do we need new designs?
- > What are the costs involved and return-on-investment for Blockchain adoption?
- Is there Interoperability and Governance between Blockchain Technologies?



 $\succ$ 

## > Existing Blockchain technologies are very Heterogeneous<sup>1</sup>

- More than 1910 cryptocurrencies that depend on multiple technology variations (https://coinmarketcap.com)
- Hyperledger, Ethereum, EOS, Bitcoin, Ripple, EoS are **just a few of the Blockchain technologies**
- Many different Vendors and Capabilities
  - Hard to understand Limitations & Differentiators
  - Persistent confusion among Engineers and Decision makers



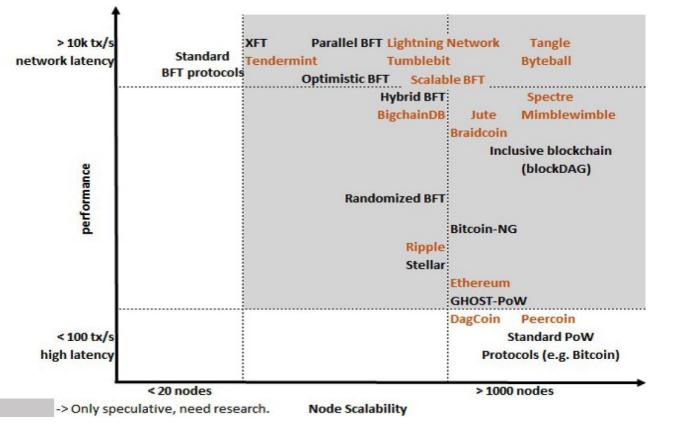
## **Some Blockchain Characteristics**

#### **Blockchain Concepts**





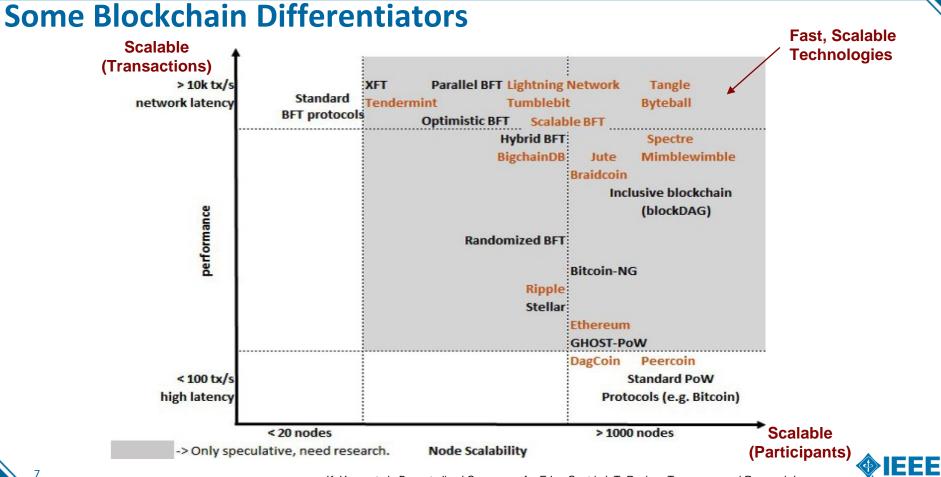



| Operation                           | Centralized                                | Decentralized                              | Distributed                         |  |
|-------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------|--|
| Governance/<br>Business Model       | Centrally Controlled                       | Community Controlled                       | Autonomous                          |  |
| Stability/Resilience                | Unstable                                   | Bounded Stability                          | Stable                              |  |
| Scalability                         | Large Throughput/ Small<br>Number of Nodes | Small Throughput/Medium<br>Number of Nodes | Infinite                            |  |
| Speed of Enterprise<br>Development  | Fast                                       | Medium                                     | Very Slow                           |  |
| Architecture<br>Evolution/Diversity | Permissioned/Private                       | Hybrid                                     | Permissionless/Public               |  |
| Tokenization                        | No                                         | Possibly                                   | Yes                                 |  |
| Trust Control                       | High Traditional/Low<br>Algorithmic        | Medium Traditional/<br>Medium Algorithmic  | Low Traditional/High<br>Algorithmic |  |

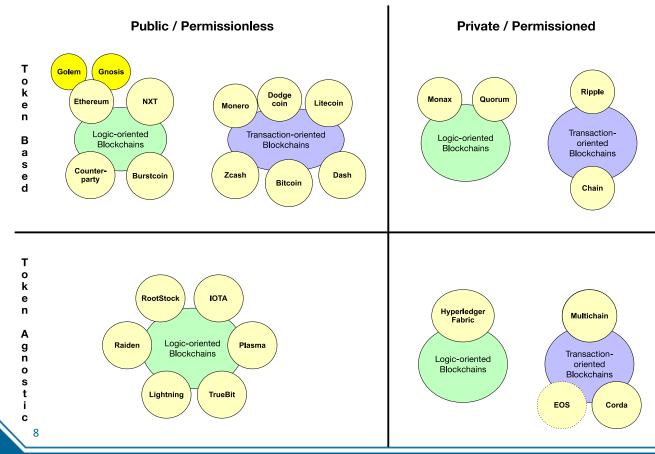
ID: 352362






5

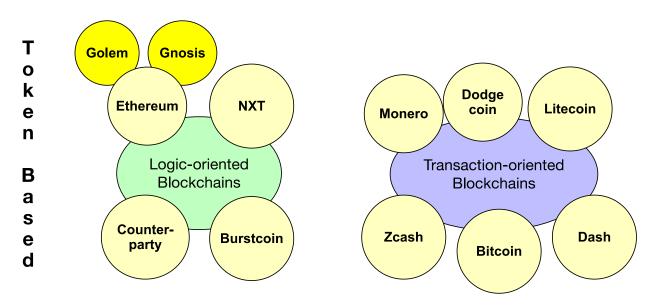





K. Yeow et al.: Decentralized Consensus for Edge-Centric IoT: Review, Taxonomy, and Research Issues

6

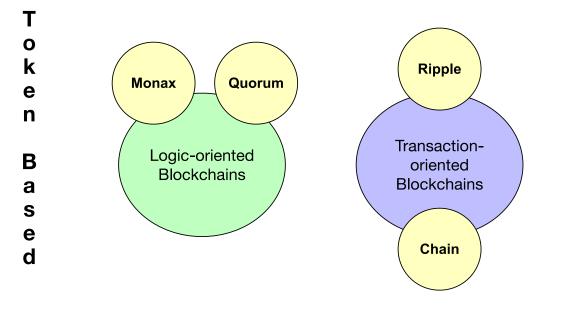



K. Yeow et al.: Decentralized Consensus for Edge-Centric IoT: Review, Taxonomy, and Research Issues



- Public or Private, Permissioned or Permissionless,
- Identity Management, Support for Entity and Transactional ACLs

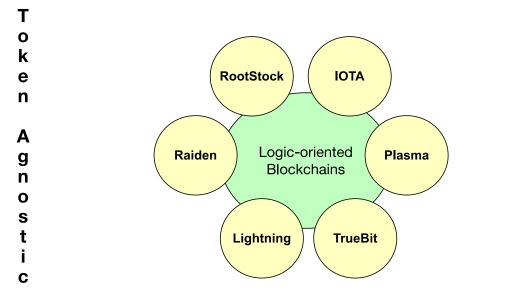



#### **Public / Permissionless**



- Public or Private, Permissioned or Permissionless,
- Identity Management, Support for Entity and Transactional ACLs

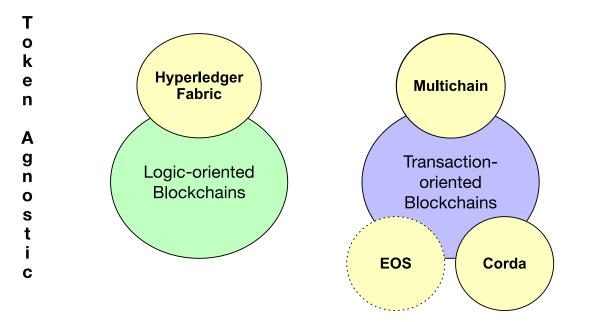



#### **Private / Permissioned**



- Public or Private, Permissioned or Permissionless,
- Identity Management, Support for Entity and Transactional ACLs




### **Public / Permissionless**



- Public or Private, Permissioned or Permissionless,
- Identity Management, Support for Entity and Transactional ACLs



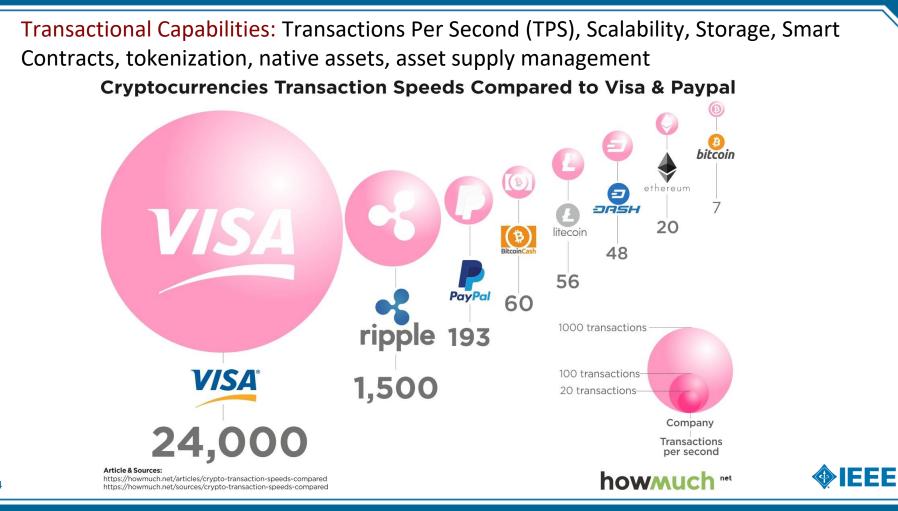
### **Private / Permissioned**



- Public or Private, Permissioned or Permissionless,
- Identity Management, Support for Entity and Transactional ACLs



Transactional Capabilities: Transactions Per Second (TPS), Scalability, Storage, Smart Contracts, tokenization, native assets, asset supply management


### **Protocol Comparison**

|                                             | Bitcoin's<br>blockchain   | Ethereum                  | Stellar                                        | Ripple                             |
|---------------------------------------------|---------------------------|---------------------------|------------------------------------------------|------------------------------------|
| Average<br>Transaction<br>Confirmation Time | 1 hour                    | 15 minutes                | 3 to 5 seconds                                 | 3 to 5 seconds                     |
| Average<br>Transaction Fees                 | \$0.61 per<br>transaction | \$0.02 per<br>transaction | \$0.01 will pay for<br>300,000<br>transactions | \$0.01 will pay for 3 transactions |
| Transactions<br>Per Second                  | 3 transactions per second | 7 transactions per second | 1000 transactions per second                   | 1000 transactions per second       |
| Consensus<br>Mechanism                      | Proof of Work             | Proof of Work             | Stellar<br>Consensus<br>Protocol (SCP)         | Ripple Consensus<br>Algorithm      |
| Validator control                           | Decentalized              | Decentalized              | Decentalized                                   | Centralized                        |
| Governance                                  | Non-profit                | Non-profit                | Non-profit                                     | For profit                         |



Stronghold

March 2018



## > Blockchain Primary Differentiating Factors (cont)

- Software Architecture: Centralized, De-centralized, Modular (Polylithic) vs Monolithic, Open Source, Closed Source
- System Requirements: Server & Node Capabilities in terms of storage, CPU, networking and limits to scalability
- Data Encryption: Support for strong Cryptographic Primitives, Configuration of additional layers of security
- Data Privacy/Data Revocation: Support for Anonymity (Zero Knowledge) and Data Revocation or Masking
- Other secondary factors depending on the Blockchain design goals



#### Five Factors in Determining a Good Business Case With DLTs Source: Aite Group

| Throughput                                                                                                 | Latency                                                                                                            | Node scalability                                                                                                   | Security                                                                                                                    | Cost                                                                                                                                |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| <b>I</b> .I                                                                                                | 0                                                                                                                  | *                                                                                                                  | A                                                                                                                           | S                                                                                                                                   |
| Volume of<br>transactions the DLT<br>is able to process<br>(tps)                                           | How long the DLT<br>takes to confirm and<br>commit each<br>transaction                                             | How many nodes the<br>DLT supports without<br>compromising<br>performance                                          | How resilient the DLT<br>system is to various<br>security threats                                                           | How much it costs to<br>build and run a DLT<br>system                                                                               |
| • Bitcoin protocol has<br>an extremely low<br>throughput of 7 tps                                          | <ul> <li>Bitcoin protocol<br/>takes 10 minutes on<br/>average to validate<br/>transactions</li> </ul>              | • Bitcoin protocol is<br>the most scalable<br>DLT in number of<br>validation nodes                                 | •The security aspects<br>are fundamentally<br>impacted by the<br>consensus algorithms                                       | •Running cost: Cost<br>per confirmed<br>transactions (CPCT)                                                                         |
| • Many DLTs have<br>made significant<br>progress on<br>throughput, ranging<br>from 500 tps to<br>5,000 tps | • Private DLTs running<br>on a consensus<br>algorithm without<br>mining can provide<br>subsecond latency<br>levels | •Private DLTs provide<br>sufficient client-node<br>scalability but with<br>limited validation-<br>node scalability | -Client onboarding<br>-Digital signatures<br>-Network attacks<br>-Data privacy<br>-Governance control<br>-Legal enforcement | •Building cost: capital<br>investment in<br>hardware and<br>equipment, software<br>development and<br>licensing, and IT<br>staffing |



## > IEEE Certification & Conformance Goals

- Create a framework for algorithmic and performance evaluation for Blockchain technologies that is open and can be easily validated
- Select the N Blockchain technologies that best represent the design space
- Enumerate the Factors to be assessed for the selected technologies
- Identify the theoretical limitations for these factors and technologies selected
- Validate the implementation performance of the technologies against different use scenarios



## > IEEE Certification & Conformance Goals (Cont)

- Present the findings to the IEEE community at large
- Enable the IEEE community to enrich the framework and extend it to
  - Additional Blockchain Technologies
  - Factors and Configuration parameters
- Mature the Conformance Process to an IEEE Technology Certificate
  - Provide a seamless transition from Conformance to Certification
- Transition the Certification Process to IEEE Standards



## **Conclusions & Call for Participation**

## We are at the forefront:

- Conformance Process is important for Blockchain maturity & adoption
- We are looking for participants in IEEE community at large
- Create a consortium/council of companies to support the effort
- Build the IEEE Standards to enable Blockchain adoption

You can contact us at: <a href="mailto:blockchain@ieee.org">blockchain@ieee.org</a>



# **Backup Slides**

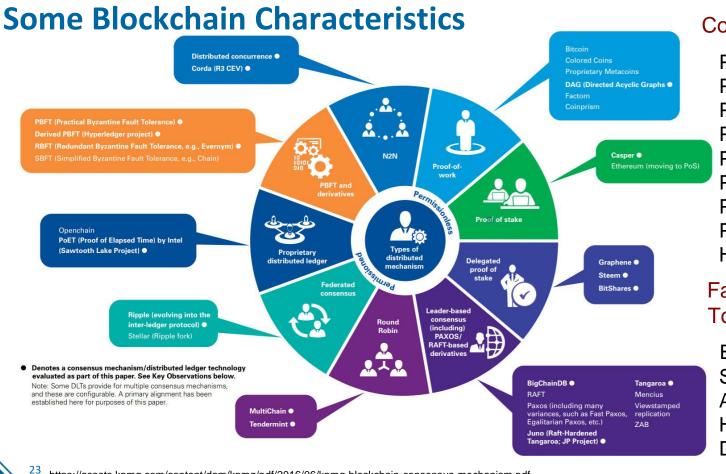


## **IEEE Conformity Assessment Program (ICAP)**

#### What is IEEE Conformity Assessment?

 Conformity Assessment is the process or processes that are used to demonstrate that a product or service meets specified requirements (set forth in Standards, Test Plans, etc.)

### Conformity Assessment Benefits

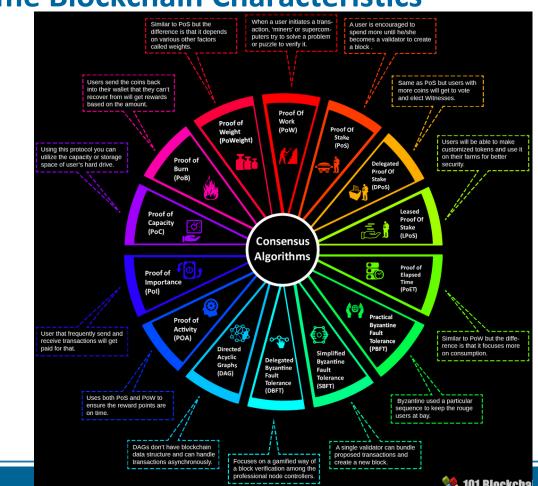

- Provides manufacturers a proven method of demonstrating compliance to the requirements
- Empowers the end-user to make better purchasing decisions
- Benefits the supplier as products can quickly gain market acceptance
- Increases the likelihood of a stable technology in the market with robust products
- Conformity Assessment Activities Include:
  - Conformance, Commissioning, Interoperability, Inspection, Accreditation
  - Test Suite Specification development
  - "Catch-all" term to address range of test-related activities



## IEEE Conformity Assessment Program (ICAP) Completes the IEEE-SA Business/Standards Lifecycle








#### Consensus Type:

Proof-of-Work, Proof-of-Stake Proof-of-Authority Proof-of-Capacity Proof-of-Space Proof-of-Storage Proof-of-Burn Proof of Elapsed Time Hybrid

#### Failure Tolerance/Attack Tolerance:

Byzantine Fault Tolerance Synchronous Asynchronous Hybrid, Non-Deterministic Deterministic



## **Some Blockchain Characteristics**

Consensus Type:

Proof-of-Work, Proof-of-Stake Proof-of-Authority Proof-of-Capacity Proof-of-Space Proof-of-Storage Proof-of-Burn Proof of Elapsed Time Hybrid

Failure Tolerance/Attack Tolerance:

Byzantine Fault Tolerance Synchronous Asynchronous Hybrid, Non-Deterministic Deterministic

https://101blockchains.com