o

accordproject.org

Smart Legal Contracts: A Standardized Approach

Houman Shadab
Co-Director, the Accord Project
houman@accordproject.org

What is the Accord Project?

_:Bl Sets the legal and technical foundation for smart legal contracts by
= interfacing with leading lawyers, industry organizations, and technologists

% Addresses the lack of a common approach for smart legal contracts and the
widely divergent, potentially incompatible, approaches that are emerging

Producing open source core for smart legal contracts that embodies a
<[> . |

collaborative techno-legal foundation and meets the needs of the legal

industry

IN COLLABORATION WITH

M cioc IEEE AIACCM st) HYPERLEDGER

Working Groups

Financial Services
Real-time incorporation of market data, dynamic pricing and collateralization, fund structures, clearing and
settlement infrastructure, claim types, coverage adjustment, use of telematics

Venture and Token Sales
Automation and integration of investment documents and connection to milestones; integration with equity
holding platforms; automation of various forms of blockchain token sales and governance frameworks

Members and partners... CLyDERCO legalzaam
Baker
O DAMD McKenzie. K€ KOCH

INDUSTRIES INC

42 MIT Connection Science

{j L} the technology of innovation @e LeXISNeXISa BOlero

Mishcon de Reya SLAUGHTER AND MAY
| 4 IEEE
Holland & Knight Standard S
Chartered
McDermott C/M /S/ -
Will & Emery BakerHostetler NORTON ROSE

FULBRIGHT

ashust @ Freshfields Linklaters

...and many more.

Goals of the Accord Project

Open Source Community

Grow a community to develop freely available code, documentation, and other deliverables supporting the
use of smart legal contracts globally across a wide variety of industries, use cases, and platforms. Subject
to the Apache-2 license to ensure that individuals and companies have wide latitude in using the code for
commercial, educational, and private purposes.

Smart Legal Contract Templating and Modeling

Develop a universally accessible and widely used open source library of modular smart legal contract and
smart clause templates and models that reflect input from transactional attorneys and other experts that
meets the needs of technology-enabled enterprises and specific business requirements. Built according to
the Cicero specification.

Leqgal Contracting Language

Develop a domain specific language for smart legal contract execution that is accessible to non-technical
professionals, compatible with a variety of execution targets such as SaaS platforms and distributed ledgers,
and meets security, modularity, and other requirements. Built according to the Ergo language specification.

https://github.com/accordproject
https://docs.accordproject.org/
https://templates.accordproject.org/
https://models.accordproject.org/
https://docs.accordproject.org/docs/cicero.html
https://docs.accordproject.org/docs/ergo.html

What is a Smart Legal Contract?

Model

Execution Editing

Verification \ / Validation

Template

Logic Natural Language

Built on Three Pillars

Legal Expertise

Technical Open
Specifications Source

Software

Step-by-step
Progressive migration/evolution of existing legal and contract management
practice:

1. Text

2. Text with digital signature
1. Text with variables (a model!) with digital signature

2. Text with variables and logic, with digital signature
a. Automated handling of notifications and contract obligations

3. Distributed execution of contractual logic

Natural Language

Late Delivery and Penalty. In case of delayed delivery[{" except for Force
Majeure cases,":? forceMajeure}] the Seller shall pay to the Buyer for every
[{penaltyDuration}] of delay penalty amounting to [{penaltyPercentage}]% of
the total value of the Equipment whose delivery has been delayed. Any
fractional part of a [{fractionalPart}] is to be considered a full
[{fractionalPart}]. The total amount of penalty shall not however, exceed

[{capPercentage}]% of the total value of the Equipment involved in late
delivery. If the delay is more than [{termination}], the Buyer is entitled to
terminate this Contract.

Model

Execution Editing

Verification \ / Validation

Template

Logic Natural Language

Model

concept SupplyModel ({

/** Does the clause include a force majeure provision? */

o Boolean forceMajeure optional

/* For every penaltyDuration that the goods are late */

o Duration penaltyDuration

/* Seller pays the buyer penaltyPercentage % of the value of the goods */

o Double penaltyPercentage

/** Up to capPercentage % of the value of the goods */

o Double capPercentage Model

/* If the goods are >= termination late then the buyer

may terminate the contract */ i$$$;~\\\ ////—dﬂﬁﬁn

o Duration termination

/* Fractional part of a ... is considered a whole ... */ i

o TemporalUnit fractionalPart

Logic Natural Language

Logic

contract SupplyAgreement over SupplyModel ({
clause lateDeliveryAndPenalty (request: Request): Response {
// Guard against force majeure

enforce !contract.forceMajeure; []
define constant penalty = ; R
(diff / contract.penaltyDuration.amount)

* contract.penaltyPercentage / 100.0 * request.goodsValue; http://github.com/accordproject/ergo

// Penalty may be capped
define constant capped =
min ([penalty,
contract.capPercentage * request.goodsValue / 100.0]);

Model

// Return the response with the penalty ocution Catting
and termination determination Worlioiton S 4 / Validation
return Response {
penalty: capped,

buyerMayTerminate: diff > contract.termination.amount Tomplate

} Logic Natural Language

http://github.com/accordproject/ergo

Programming Model

Late Delivery and Penalty. In case of

delayed delivery[{" except for Force { "forceMajeure” : false,

"penaltyDuration" : { amount :2,

Majeure cases,":? forceMajeure}] the . .« "
Seller shall pay to the Buyer for every Contract Contract unit : “days” },
[{penaltyDuration}] of delay penalty Template Parameters "penaltyPercentage"” : 10.5,

amounting to [{penaltyPercentage}]% of coo I

the ...

Contract Creation

Y Contract Execution

Contract

Response { "penalty": 110.00000000000001,
Instance P

"buyerMayTerminate": true }

Request

{ "agreedDelivery": "December 17, 2017 23:59:00",
"deliveredAt": "December 18, 2017 00:24:00", Contract

"goodsValue": 200.00 } . :
Obligations

Ergo’s Goals

Abaﬁhe v2 License

Openness

A good smart contract language is a $1 billion problem.

Why? Look at the amounts lost in some recent hacks:

@ [% DSLs for Ethereum

o Parity - $300 million
¢ DAO - $50 million

* PoWHCoin - $1 million

ontracts X

.michaelburge.us/2018/05/1...

or Ethereum
Jontracts

Michael Burge

W

How to apply this hoomse

e ExCel = BooRT

o | [| o e

=l (=l il i~ bl il

18|

Ready

19
AT Thil\ shest JEE

rgraat Jools Data Hindow Help

2 Gy

Usability

| Blm

Programming Model

N Ergo clause late(req : LateRequest)
: LateResponse {

clause :: emit BillingObligation
Request x State — {amount: req.weeks * 5.0};
(Response x State
x Obligation[]) enforce req.weeks > 0.0
| Error else throw CheatError{};

set state PenaltyPaid{};

return LateResponse{};

}

call late(LateRequest{weeks:2.0});

Why a New Language?

e Domain specific meant for legal contract logic

e |Integral with Accord Project specification: CML and Templates

e Ease of use for legal-tech (template) developers

e Portable, compiles to various runtimes (e.g., nodejs) or DLTs (e.g., Fabric, EVM)
e Formally specified, no run-time errors, all contract calls terminate, deterministic
e Suitable for analysis & verification (contract property, cost bounds)

e “Modern language”: Distributed as Node.js package, Tooling (mode for various

code editors, REPL), Documentation, Modularity, Error reporting, Performance...

Ergo Contracts as Classes

https://blog.colony.io/a-simple-agreement-for-future-tokens-or-equity-b8ef08608347

contract Safte over SafteContract {
clause tokenSale (request : TokenSale) : TokenShare {
let discountRate = (100.0 - contract.discount) / 100.00;
let discountPrice = request.tokenPrice * discountRate;
return TokenShare{ tokenAmount : contract.purchaseAmount / discountPrice }

clause equityFinancing(request : EquityFinancing) : EquityShare ({
let discountRate = (100.0 - contract.discount) / 100.00;
let discountPrice = request.sharePrice * discountRate;
return EquityShare{ equityAmount : contract.purchaseAmount / discountPrice }

clause disolutionEvent (request : DissolutionEvent) : PayOut {
return PayOut{ amount : contract.purchaseAmount }

}

call dissolutionEvent (DissolutionEvent{ cause : "Cold feet" });
call tokenSale (TokenSale{ tokenPrice: 3.14 });
call equityFinancing(EquityFinancing{ sharePrice: 2.98 });

https://blog.colony.io/a-simple-agreement-for-future-tokens-or-equity-b8ef08608347

Ergo Contracts as Rules

https://blog.colony.io/a-simple-agreement-for-future-tokens-or-equity-b8ef08608347

contract Safte over SafteContract

rule tokenSale when TokenSale do
let discountRate = (100.0 - contract.discount) / 100.00;

let discountPrice = request.tokenPrice * discountRate;
return TokenShare{ tokenAmount : contract.purchaseAmount / discountPrice }

rule equityFinancing when EquityFinancing do
let discountRate = (100.0 - contract.discount) / 100.00;
let discountPrice = request.sharePrice * discountRate;
return EquityShare{ equityAmount : contract.purchaseAmount / discountPrice }

rule disolutionEvent when DissolutionEvent do
return PayOut{ amount : contract.purchaseAmount }

send DissolutionEvent{ cause : "Cold feet" };
send TokenSale{ tokenPrice: 3.14 };
send EquityFinancing{ sharePrice: 2.98 };

https://blog.colony.io/a-simple-agreement-for-future-tokens-or-equity-b8ef08608347

Blockchain Agnostic

Corda blockchain’s IOU implemented as logic in Ergo

bash-3.2$ ergoc --target java examples/corda-iou/model.cto examples/corda-iou/logic.ergo

04:32:50 - info: Logging initialized. 2018-09-19T08:32:50.605Z

Compiled Ergo 'examples/corda-iou/logic.ergo' —- created 'examples/corda-iou/logic.java'

bash-3.2$ javac -cp backends/java/bin:backends/java/lib/* examples/corda-iou/logic.java

bash-3.2$ java -cp backends/java/bin:backends/java/lib/*:examples/corda-iou org.accordproject.ergo.RunErgo -r
equest examples/corda-iou/request.json -state examples/corda-iou/state.json -contract examples/corda-iou/cont
ract.json logic
{"left":{"response":{"$class":"org.accordproject.cicero.runtime.Response"},"state":{"$class":"org.accordproje
ct.cicero.contract.AccordContractState","stateId":"1"},"emit": [1}}

bash-3.2$ java -cp backends/java/bin:backends/java/lib/*:examples/corda-iou org.accordproject.ergo.RunErgo -r
equest examples/corda-iou/request-wrong.json -state examples/corda-iou/state.json -contract examples/corda-io
u/contract.json logic

{"right":{"message":"The IOU's value must be non-negative.","$class":"org.accordproject.ergo.stdlib.ErgoError
Response"}}

bash-3.2$ |}

Future Work: Contract
Composition

e Most contracts include various
standard “reusable” or “boilerplate”

clauses

e Examples: Installment payments,
interest calculations, jurisdiction, etc.

e What is the right model to compose
clauses in Ergo?

o Clauses
o Clauses

Traits?
Rules?

LOAN AGREEMENT

Loan Amount Dollars (S)

Date .20,

1. THE PARTIES. For the above value received by

mailing address of . City of
State of . (the "Borrower’), agrees to pay
with a mailing address of
of . State of .

11 PAYMENT. This agreement, (the “Note"), shall be due and pay:
principal and any accrued interest, in ane of the following ways:

[Once per week beginning on .20
seven (7) days until the balance s paid

[Once per month beginning on .20
the __ of every month until the balance is paid

O Other:

All payments made by the Borrower are to be applied first (1*) to a
then to the principal balance. The total amount of the loan shall be
day of .20

Il INTEREST. The Note shall

C] - Bear interest at a rate of percent (
annually. The rate must be equal to or less than the usury rate in tt

[- Not bear interest.
IV. PREPAYMENT. The Borrower has the right to pay back the lo:

additional payments at any time without penalty.

© 2016 eForms. org. Al Rights Reserved

Name of Hesromer |
R —

Name of Lescer

20 i

Promissory Note
Installment Payments with Interest

il receive crditsfoe pregayment

due o paid i ol hicheer dae cccurs st Damaver

1. Fr vabas rscive, Bormwer promsses i pay 1 Lender he amesant of . o

S por v fom he date this mote s sigmed ureil the

ducing th sl o o imseres s b sepaid).

necuive credits for pegayments).

LOAN AGREEN .

ACKNOWLUEDGEMENT OF DEBT

in installenis, which

3.0 il ocet s s (his ot i v reesived by L it
vt of e prinipul will becsmse immoately due and payable o the vpsion of | enker without prive

and inesest, of et e than

er monih, o om e firt day o each monih, unil e principal and infeestare pad i il

days o s s o, The

Enterad into between

ST Ter——

Fhe term B refers i cne o mare baeroers. fshere i mare haw ane bormaver,thy ageee 4 be

srverafly fible, The orss

e Lenzer)
and S
1TThe Bamzwer] -

1Amaunt of kaan

The Lender hersty agmes 12 lend the sum of
suthersun-der

2Payment of kaan to Barower

% s mzreed betwesn the parties thet papment of the lo=n am:

P -

Betore the exginy of thres business deys efer the coneusian of
nes pusi ness cxpsTne Borrower mep eTminate te ComTEG R

smeil not b entitied to interest for the periad preceding the dste upon wiich the mansy i peid to the
Borrower.

3Periad of loan

This kaan shall endure for 3 pericd of manths calulaed from {date].
in order to csim exemption from the Usury Act 75 of 1558 this number mey not excsed 55 monti|

dintarast

The Borrovershall be obfiged to pay interest at the rae of |percantags] per amum,
‘such interestto be pid tagether with the capital sum of the loan 2t the end of the loan period

or

The Bormwer shall be obliged to pay interestat the rate of

the interest and capital to be paid in equal monthly instalments of

{pere=ntage) per anmum,

5 Exceptio non numeratas pecunise

The Borrower sxprmasly rencunces the bene w of the sxcetic non numeratas pecuniss d @n
rms that he understands the meaning of this sxceptionand the & ctof fts renunciation.

Future Work: More on

Verification
Typed Ergo programs should | ;f:::em Join least 51, oy a
(a) always terminate INros suby gupy. B e AT
(b) without any runtime errors | onrite consistent_jo, 4 1
| |

The Good News

Ergo is written in Coqg, and
built on Q*Cert which gives us:
- Data model

- Type foundations

- Optimization framework

- Proofs!

accord-project.slack.com

@accordhq

www.accordproject.org

houman@accordproject.org

0800

