
Smart Legal Contracts: A Standardized Approach

Houman Shadab

Co-Director, the Accord Project

houman@accordproject.org

IN COLLABORATION WITH

Sets the legal and technical foundation for smart legal contracts by

interfacing with leading lawyers, industry organizations, and technologists

Addresses the lack of a common approach for smart legal contracts and the

widely divergent, potentially incompatible, approaches that are emerging

Producing open source core for smart legal contracts that embodies a

collaborative techno-legal foundation and meets the needs of the legal

industry

What is the Accord Project?

Working Groups
Supply Chain
MSAs and ancillary documents, tracking data standardization, upstream vs. downstream coordination, real-

time system integration, secure data exchange, supply chain visibility, IoT standards

Intellectual Property
Automating digital rights management, IP registration in a global database, automating the grant,

refusal, termination, and assignment of IP, incorporation of real-time data about infringement

Financial Services
Real-time incorporation of market data, dynamic pricing and collateralization, fund structures, clearing and

settlement infrastructure, claim types, coverage adjustment, use of telematics

Dispute Resolution
Preventing and resolving disputes involving smart legal contracts; divergence between law and code;

automated and distributed dispute resolution; smart ADR clauses; relationship with online dispute resolution.

Venture and Token Sales
Automation and integration of investment documents and connection to milestones; integration with equity

holding platforms; automation of various forms of blockchain token sales and governance frameworks

Members and partners...

4
...and many more.

Goals of the Accord Project
Open Source Community

Grow a community to develop freely available code, documentation, and other deliverables supporting the

use of smart legal contracts globally across a wide variety of industries, use cases, and platforms. Subject

to the Apache-2 license to ensure that individuals and companies have wide latitude in using the code for

commercial, educational, and private purposes.

Smart Legal Contract Templating and Modeling

Develop a universally accessible and widely used open source library of modular smart legal contract and

smart clause templates and models that reflect input from transactional attorneys and other experts that

meets the needs of technology-enabled enterprises and specific business requirements. Built according to

the Cicero specification.

Legal Contracting Language

Develop a domain specific language for smart legal contract execution that is accessible to non-technical

professionals, compatible with a variety of execution targets such as SaaS platforms and distributed ledgers,

and meets security, modularity, and other requirements. Built according to the Ergo language specification.

https://github.com/accordproject
https://docs.accordproject.org/
https://templates.accordproject.org/
https://models.accordproject.org/
https://docs.accordproject.org/docs/cicero.html
https://docs.accordproject.org/docs/ergo.html

What is a Smart Legal Contract?

Built on Three Pillars

Legal Expertise

Open

Source

Software

Technical

Specifications

Progressive migration/evolution of existing legal and contract management

practice:

1. Text

2. Text with digital signature

1. Text with variables (a model!) with digital signature

2. Text with variables and logic, with digital signature
a. Automated handling of notifications and contract obligations

3. Distributed execution of contractual logic

Step-by-step

Natural Language

Late Delivery and Penalty. In case of delayed delivery[{" except for Force
Majeure cases,":? forceMajeure}] the Seller shall pay to the Buyer for every
[{penaltyDuration}] of delay penalty amounting to [{penaltyPercentage}]% of
the total value of the Equipment whose delivery has been delayed. Any
fractional part of a [{fractionalPart}] is to be considered a full
[{fractionalPart}]. The total amount of penalty shall not however, exceed
[{capPercentage}]% of the total value of the Equipment involved in late
delivery. If the delay is more than [{termination}], the Buyer is entitled to
terminate this Contract.

Model

concept SupplyModel {

/** Does the clause include a force majeure provision? */

o Boolean forceMajeure optional

/* For every penaltyDuration that the goods are late */

o Duration penaltyDuration

/* Seller pays the buyer penaltyPercentage % of the value of the goods */

o Double penaltyPercentage

/** Up to capPercentage % of the value of the goods */

o Double capPercentage

/* If the goods are >= termination late then the buyer

may terminate the contract */

o Duration termination

/* Fractional part of a ... is considered a whole ... */

o TemporalUnit fractionalPart

}

Logic
contract SupplyAgreement over SupplyModel {

clause lateDeliveryAndPenalty(request: Request): Response {

// Guard against force majeure

enforce !contract.forceMajeure;

define constant penalty =

(diff / contract.penaltyDuration.amount)

* contract.penaltyPercentage / 100.0 * request.goodsValue;

// Penalty may be capped

define constant capped =

min([penalty,

contract.capPercentage * request.goodsValue / 100.0]);

// Return the response with the penalty

and termination determination

return Response {

penalty: capped,

buyerMayTerminate: diff > contract.termination.amount

}

}

}

http://github.com/accordproject/ergo

http://github.com/accordproject/ergo

Programming Model

Contract

Instance
Request Response

State

Contract

Template

Contract

Parameters

Late Delivery and Penalty. In case of
delayed delivery[{" except for Force
Majeure cases,":? forceMajeure}] the
Seller shall pay to the Buyer for every
[{penaltyDuration}] of delay penalty
amounting to [{penaltyPercentage}]% of
the ...

Contract Creation

Contract Execution

Contract

Obligations

{ "forceMajeure" : false,
"penaltyDuration" : { amount :2,

unit : “days” },
"penaltyPercentage" : 10.5,
... }

{ "agreedDelivery": "December 17, 2017 23:59:00",
"deliveredAt": "December 18, 2017 00:24:00",
"goodsValue": 200.00 }

{ "penalty": 110.00000000000001,
"buyerMayTerminate": true }

Efficiency

Safety

Usability

Openness

Ergo’s Goals

clause ::

Request × State⟶
(Response × State

× Obligation[])

| Error

clause late(req : LateRequest)

: LateResponse {

emit BillingObligation

{amount: req.weeks * 5.0};

enforce req.weeks > 0.0

else throw CheatError{};

set state PenaltyPaid{};

return LateResponse{};

}

call late(LateRequest{weeks:2.0});

Programming Model

in Ergo

● Domain specific meant for legal contract logic

● Integral with Accord Project specification: CML and Templates

● Ease of use for legal-tech (template) developers

● Portable, compiles to various runtimes (e.g., nodejs) or DLTs (e.g., Fabric, EVM)

● Formally specified, no run-time errors, all contract calls terminate, deterministic

● Suitable for analysis & verification (contract property, cost bounds)

● “Modern language”: Distributed as Node.js package, Tooling (mode for various

code editors, REPL), Documentation, Modularity, Error reporting, Performance…

Why a New Language?

Ergo Contracts as Classes

contract Safte over SafteContract {

clause tokenSale(request : TokenSale) : TokenShare {

let discountRate = (100.0 - contract.discount) / 100.00;

let discountPrice = request.tokenPrice * discountRate;

return TokenShare{ tokenAmount : contract.purchaseAmount / discountPrice }

}

clause equityFinancing(request : EquityFinancing) : EquityShare {

let discountRate = (100.0 - contract.discount) / 100.00;

let discountPrice = request.sharePrice * discountRate;

return EquityShare{ equityAmount : contract.purchaseAmount / discountPrice }

}

clause disolutionEvent(request : DissolutionEvent) : PayOut {

return PayOut{ amount : contract.purchaseAmount }

}

}

call dissolutionEvent(DissolutionEvent{ cause : "Cold feet" });

call tokenSale(TokenSale{ tokenPrice: 3.14 });

call equityFinancing(EquityFinancing{ sharePrice: 2.98 });

https://blog.colony.io/a-simple-agreement-for-future-tokens-or-equity-b8ef08608347

https://blog.colony.io/a-simple-agreement-for-future-tokens-or-equity-b8ef08608347

Ergo Contracts as Rules

contract Safte over SafteContract

rule tokenSale when TokenSale do

let discountRate = (100.0 - contract.discount) / 100.00;

let discountPrice = request.tokenPrice * discountRate;

return TokenShare{ tokenAmount : contract.purchaseAmount / discountPrice }

;

rule equityFinancing when EquityFinancing do

let discountRate = (100.0 - contract.discount) / 100.00;

let discountPrice = request.sharePrice * discountRate;

return EquityShare{ equityAmount : contract.purchaseAmount / discountPrice }

;

rule disolutionEvent when DissolutionEvent do

return PayOut{ amount : contract.purchaseAmount }

;

send DissolutionEvent{ cause : "Cold feet" };

send TokenSale{ tokenPrice: 3.14 };

send EquityFinancing{ sharePrice: 2.98 };

https://blog.colony.io/a-simple-agreement-for-future-tokens-or-equity-b8ef08608347

https://blog.colony.io/a-simple-agreement-for-future-tokens-or-equity-b8ef08608347

Corda blockchain’s IOU implemented as logic in Ergo

Blockchain Agnostic

● Most contracts include various

standard “reusable” or “boilerplate”

clauses

● Examples: Installment payments,

interest calculations, jurisdiction, etc.

● What is the right model to compose

clauses in Ergo?

○ Clauses = Traits?

○ Clauses = Rules?

Future Work: Contract

Composition

Typed Ergo programs should

(a) always terminate

(b) without any runtime errors

The Good News

Ergo is written in Coq, and

built on Q*Cert which gives us:

- Data model

- Type foundations

- Optimization framework

- Proofs!

Future Work: More on

Verification

accord-project.slack.com

@accordhq

houman@accordproject.org

www.accordproject.org

