Energy Efficient Decentralized Authentication in Internet of Underwater Things using Blockchain

Abbas Yazdinejad, Ali Dehghantanha (University of Guelph, Canada) **Reza M. Parizi** (Kennesaw State University, USA)

Gautam Srivastava (Brandon University, Canada)

Kim-Kwang Raymond Choo (University of Texas at San Antonio, USA)

Decentralized Science Lab (dSL)

https://www.blockchaincyberlab.com/

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

P4-to-blockchain: A secure blockchain-enabled packet parser for software defined networking

Abbas Yazdinejad^a, Reza M. Parizi^b, Ali Dehghantanha^a, Kim-Kwang Raymond Choo^{c,*}

- ^a Cyber Science Lab, School of Computer Science, University of Guelph, Ontario, Canada
- ⁵ Department of Software Engineering and Game Development, Kennesaw State University, GA 30060, United States
- Department of Information Systems and Cyber Security, University of Texas at San Antonio, Texas, United States

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019

Blockchain-enabled Authentication Handover with Efficient Privacy Protection in SDN-based 5G Networks

Abbas Yazdinejad, Reza M. Parizi, Senior Member, IEEE, Ali Dehghantanha, Senior Member, IEEE, and Kim-Kwang Raymond Choo. Senior Member, IEEE

Yorktown Heights NY, US/

Kennesaw State University

Internet of Things (IoT)

- Wearable devices (e.g. smart uniforms with motion sensors and monitoring for threat awareness)
- Portable (but not wearable) devices and apps
- Less portable / stationary devices
- Many applications (medical IoMT, battlefields IoBT, industry IIoT, etc.)
- Security and privacy are two of many ongoing research and operational challenges

Most (IoT) systems are not designed with security in mind!

Internet of Underwater Things (IoUT)

- Nearly 70% of the Earth's surface is covered by water and a large proportion of underwater environments are still unknown and have not been explored
- With the increasing growth of IoT and its entry into all areas of urban life including water environments
- IoUT can be defined as a network of smart devices interconnected in an underwater environment

IoUT applications

- It made of unmanned vehicles that scour the sea while communicating with underwater sensors and sending the information to networks atop the surface.
- Environmental monitoring
- Underwater exploration

IoUT applications

- Disaster prevention
- Monitoring the health of animals
- Oil and Gas

Felemban, Emad, et al. "Underwater sensor network applications: A comprehensive survey." *International Journal of Distributed Sensor Networks* 11.11 (2015): 896832

Morozs, Nils. "Unsynchronized dual-hop scheduling for practical data gathering in underwater sensor networks." 2018 Fourth Underwater Communications and Networking Conference (UComms). IEEE, 2018.

IoUT applications

Military

IoUT-specific issues

- Long-term isolated environments...
- Most of the classic authentication methods and centralized security mechanisms require a trusted third-party
- The lack of security in design, inability to defend against attacks, resource constraints...
- The mobility of IoUT devices and the frequent switching between clusters, there is a need for frequent authentication to identify and authenticate devices which can require high energy use, unacceptable for IoUT

Proposed approach (Preliminary work)

- Our solution is based on a cluster-based network of objects that uses distributed ledger technology (DLT) to allow secure exchange of data underwater (decentralized authentication).
- ✓ the IoUT devices in each cluster are connected through P2P networks using a blockchain mechanism (removing the need for re-authentication)

The architecture of the proposed method

Procedure 1 : Joining a Cluster

- X1 is authenticated, and HX sends a transaction to the blockchain.
- X1 is trustful and HX shares a symmetric key for safe transfer with X1.
- These transactions are valid in a new block and are stored by HX.
- When X1 migrates to another cluster, for example, to cluster Y managed by HY, X1 sends a request to HY to join it.

The process of migration and file transfer between IoUT devices

Algorithm 1 Migration mechanism among clusters

```
1: Call register (X1) // Reg devices in Cluster
 2: Device X1 → Reg authentication

 HX → Send(authentication vector (Public & Private/ Key))

 4: Hash_Function (X1)
 5: Node X1: receive (Hash 256)
 6: Call Join_Cluster (X1) // join to cluster
         If (X1== Rang)
           auth = 1
           Calculate (mobility)
           auth = 0
           Calculate (migration)
13:
         While (auth = 0) do{
14:
           if (Mobility = 1 or migration = 1)
15:
              if (authenticate)) // in cluster
16:
                HX: Message (X1)
                Update(cluster_info)
18:
                Migrate(X1, current, Target)
19:
20:
                Hx: Message (Blockchain)// send to BC Update X1
     While (migrate or mobility != 0){
23:
         New cluster head = Received (data X1)
24:
         New cluster head = Decrypt (dataCreate header)
26: end
```

Algorithm 2 Transfer files in cluster

```
1: Device X1 Announce to X2// User X1 wants to send information to User X2
2: If (user X1== authentic in cluster && trust)
3: HX (Check traffic cells)
4: X1 calculate (optimize (path))
5: X1 Encrypt (send data (dK)) // encrypt with Private key
6: X1 = Send (WK)
7: X2 = monitor_trust-data_(X1)
8: else
9: Add to block ()
10: X2= Received (data)
11: X2 = Decrypt (data) // using private key and re-organize data
12: end
```


Preliminary Results

- Using the NS-2 V2:35 simulation
 - Average energy consumption
 - Packet delivery rate
 - End-to-end delay
 - Authentication attacks

Simulation Parameters	Values	
Simulator	NS-2.35	
Type of channel	Wireless channel	
Radio range of a node	Random	
Propagation model	Propagation/Two ray channel	
MAC protocol	Mac/802.11	
Mobility model	Random waypoint model	
Nodes speed	3 m/s	
Number of IoUT Devices (sensor)	200 - 500	
Link type of queue	Queue/Drop Tail	
Number of Cluster	10	
Traffic Type	Constant Bit Rate (CBR)	
Type of Antenna	Antenna/Omni Antenna	
Simulation Time (Second)	800	
Evaluation parameters	End to End delay, delivery ratio,	
•	Energy consumption	
Number of Simulation runs/scenario	30	
Area	2500 m * 2500 m	
Packet size	512 Byte	
Length of packets (Cluster to BC)	32 Byte	
Previous hash	16 Byte	
Transaction counter	9 Byte	
Block Header Block Size	80 8 Byte	

- The proposed method was compared with a classic authentication method as given in through simulation.
- ✓ Specifically, the classic method does not consider the constraints of an underwater environment and cluster structuring.
- ✓ The given classical method needs to be re-authenticated during movement of nodes between clusters.

Evaluation Results

Measures	Classic	Proposed	Reduction (%)
Execution Time (sec)	24.450	12.405	49.26%
P_{com} (mW)	492628	246311	49.99%
Energy consumption (mJ)	12044	3055	74.63%

Equation Parameters	Description
N_t	Number of times a transmitter is switched "on"
P_t	Power consumed by transmitters (mW)
T_t	Transmitter "on" time (sec)
P_{out}	Output power (mW)
N_r	Number of times receiver is switched "on"
P_r	Power consumed by receiver (mW)
T_r	Start-up time for receiver (sec)
Ė	Energy (mJ)
t	Time (sec)

Average energy consumption in Simulated Scenario

End-to-End delay

Packets delivered in Simulated Scenario

Authentication Attack Detection Probability

Conclusion

- Our preliminary work shows the feasibility of integrating blockchain with IoUT
- For future work, exploring the use of SDN in the underwater environment and its impact on the authentication process. Plus, more evaluation on blockchain performance.

Questions?

Decentralized Science Lab (dSL)

https://www.blockchaincyberlab.com/

Email: rparizi1@kennesaw.edu

