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I. INTRODUCTION

With the commencement of the Industrial Internet of Things (IIoT), followed by Industry 4.0, the 
amount of data generated by the connected components has grown drastically. This opens up new 
possibilities for effectively utilizing such data to improve the operational services of the industries as 
well as provide intelligent customer support. To gain knowledge, industries are inclined toward 
developing novel machine learning (ML) approaches for processing or modeling such data. Hence, it is 
extremely important to collect training data distributed across enterprises or industries to develop a 
highly trained model [1]. However, training ML models in such a distributed setting introduces 
additional security concerns as industries are unwilling to share their private and sensitive information 
with third-party servers. As a result, collaborative learning [2] has recently been introduced, which 
allows data owners to collectively train a globally shared model by leveraging their private inputs 
without exporting them to any external server. 
  Collaborative learning is a promising new paradigm where each device contributes to the global 
model update by sharing its local model with the cloud/aggregation server without transmitting the 
private data through the network [3]. Despite the advantages of collaborative learning, a couple of 
primary concerns are poisoning attacks and the vulnerability of locally trained models to information 
leakage. In a poisoning attack, a malicious entity contributes adversarial updates to the shared model 
parameters. In contrast, it tries to infer the properties of the sensitive training dataset of neighboring 
data owners in case of an information leakage attack [4]. Another potential concern is input data 
privacy, wherein an attacker performs model-inversion attacks to restore the original training dataset; 
hence it is essential to keep the local models private. Apart from the privacy issues, the 
cloud/aggregation server may also behave maliciously by returning forged aggregated results to the 
devices to impact model updates. Under worse circumstances, a server may also return carefully 
crafted results to the devices to analyze the uploaded data's statistical characteristics and 
unintentionally provoke the devices to expose sensitive information. Additionally, since the IIoT 
devices are typically low-powered, they may become unavailable or dead (i.e., device dropout may 
happen) at any time in the network. Lastly, the involved parties (e.g., IIoT devices, servers, etc.) may 
also collude to launch one or more of the attacks, as mentioned earlier, simultaneously. 

The recent state-of-the-art works [1–3] have focused on handling one or more of the above concerns. 
However, they have mainly been addressed in an isolated manner. For example, defense against 
poisoning and information leakage attacks has been discussed separately in the literature using various 
techniques like secure aggregation, differential privacy, etc. A few such works [5, 6] have also 
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introduced fog as a middleware platform between devices (i.e., data owners) and cloud/aggregation 
servers to bring computation to the edge further and reduce trust dependence on the cloud. However, to 
the best of our knowledge, no substantial work has solved all of the concerns mentioned above 
concurrently. The latest works [4, 7] have also proposed fully decentralized blockchain frameworks 
with innovative consensus mechanisms to eliminate the concept of centralized servers alongside 
addressing some of the aforementioned concerns for a collaborative learning setup. However, industries 
or companies may not always be willing to design their customized blockchain platform with integrated 
consensus mechanisms. Further, the attack vectors on such newly designed consensus mechanisms are 
also unknown, unlike the traditional ones. Therefore, it may instead be more suitable to utilize the 
benefits of an already existing permissioned or permissionless blockchain platform in such real-life 
application scenarios. Thus, in our work, we focus on integrating a permissionless blockchain platform 
as the backbone of the collaborative learning setup. 

 

II. BLOCKCHAIN: A PROMISING SOLUTION 

A blockchain is a tamper-resistant, immutable, distributed verifiable ledger. Information stored in a 
blockchain is made up of a chain of blocks where each block consists of a series of transactions. 
The blocks are typically hash-linked so that if a transaction is modified in one block, it has to be 
altered in all the subsequent blocks [8]. Popular blockchain platforms like Ethereum support Turing-
complete languages to write smart contracts. A Smart Contract is a self-enforcing piece of a computer 
program that can be used to formalize simple agreements between two parties and control the transfer 
of digital currencies (i.e., cryptocurrency) or assets between them [9]. Once a contract is deployed,  
i t s  execut ion  can  be  t r iggered  v ia  t ransact ions  processed by miners, who are special nodes 
responsible for validating and adding transactions to blocks [8]. Moreover, in smart contracts, apart 
from exchanging cryptocurrencies, programs can be written to execute operations such as access policy 
verification. Blockchain is chosen as the fundamental backbone for this work because it is capable 
enough to host distributed applications with the help of smart contracts. Moreover, blockchain keeps 
a record of all the necessary transactions occurring in the network and thereby maintains 
transparency. It also acts as a trusted intermediary and resolves any disputes by performing payment 
settlements. This motivates us to integrate blockchain into the collaborative learning setup to utilize 
the benefits of the distributed nature of blockchain. Apart from that, by introducing blockchain, we 
can also defend against the said attacks (like poisoning attacks). Lastly, blockchain also allows us to 
efficiently handle disputes and collusion cases by designing smart contracts and incentivizing the 
parties involved. 

 

III. OUR PROPOSED SCHEME 

The basic idea of our proposed scheme is to train a regression model (i.e., linear/logistic regression) in a 
distributed fashion where the IIoT devices, fog nodes, and the cloud collaboratively execute a global 
gradient computation. The three major aims of the scheme are as follows: 
• Prevent information leakage attacks by keeping the training data of each IIoT device private and 

on-premise. 
• Prevent poisoning attacks by verifying the local model updates sent out by each IIoT device. 
• Prevent colluding parties from making sufficient gains. 



Our proposed scheme tries to achieve the aforementioned goals while converging to the optimal 
global model. Initially, we use polynomial commitment [10] along with verification to defend against 
poisoning attacks. Polynomial commitment takes an input and maps it to a point on the elliptic curve. 
Later, Shamir's Secret Sharing [11], coupled with additive homomorphism, was used to blind the locally 
trained model updates from the IIoT devices before sending them out to the fog nodes. Since t shares are 
enough to reconstruct the secret, therefore Shamir's secret sharing also ensures robustness to IIoT device 
dropout in the network up to a certain specified threshold. Finally, a secure aggregation scheme based on 
the previously used polynomial commitment is employed to achieve verifiable aggregation of the 
global model. Our scheme also deploys smart contracts on the blockchain to act as an enforcer of 
rules. We have deployed a Contract (S) to maintain fairness and manage all necessary operations. 
Additionally, in case of any dispute, the Turing-completeness (i.e., the ability to simulate any 
calculation) of the blockchain platform has been used to codify all necessary actions. Further, the native 
currency of blockchain is used to control and distribute incentives. The immutable property of 
blockchain has been used to record all data and control message exchanges in the system to provide a 
transparent infrastructure. 

 
Working Principle: Each IIoT device holds a local dataset and its corresponding model parameter, 
which gets updated in each round of iteration. Each dataset is a 𝑚𝑚𝑗𝑗 × 𝑘𝑘 matrix representing mj training 
samples with k features where mj can vary from device to device. The model parameter is a matrix of 
coefficients with l number of output classes. In our proposed scheme, 𝑀𝑀 =  ∑ 𝑚𝑚𝑗𝑗 𝑁𝑁

𝑗𝑗=1 (where N is the 
total number of IIoT devices in the system) and l are publicly known by every participant, whereas k is 
private and is only known to the corresponding data owner. A fog-based two-tier clustered architecture 
forms the backbone for our proposed scheme. Figure 1 shows the workflow of the proposed scheme, 
which consists of the following steps: 

 
• System Setup: Given two groups, G1 and GT, of large prime order q with generators g1 and g2, 

respectively, there exists a bilinear pairing defined as a map   �̂�𝑒: 𝐺𝐺1 ×  𝐺𝐺1  → 𝐺𝐺𝑇𝑇   which would be used 
for polynomial commitments. A Trusted Authority (TA) generates (pki, ski) key-pair for each fog node 
Fi. Lastly, it also generates a collision-resistant one-way hash function H: {0, 1}∗ → {0, 1}n. 

• Local Training: Each IIoT device Dij feeds its own training dataset and the model parameter 
coefficient matrix as inputs at each round of iteration. The local training is performed over these 
two input parameters to generate local gradient gij. To keep the local gradient private, the IIoT 
device calls contract S to publish a random differentially private noise ηij sampled from a normal 
distribution. The device then masks its gradient gij using this noise and sends a 3- tuple packet 
consisting of the masked update (gij + ηij), a commitment to the unmasked update, and a commitment 
to the noise to the nearest online fog node Fi. 

NOTE: When a malicious IIoT device wants to add a poisonous update gi
′
j to the global model, 

it also needs to perturb the noise ηij to make the masked update (gi′j + ηi′j) look like a legitimate 
one. Since, in our case, the noise is generated by the smart contract, which is tamper-resistant, 
such malicious activities are by default prevented. 

• Verification by Fog: When a Fi receives this 3-tuple packet from an IIoT device, it first computes a 
commitment over the received masked update. Then it proceeds to check whether this computed 



commitment is consistent with the received commitments to the noise and the unmasked update. The 
consistency checking is performed using the homomorphic property of commitments. On successful 
verification, Fi is assured that the received masked update (gij + ηij) was indeed computed using the 
received commitments to the noise and the unmasked update otherwise, Fi discards the 3- tuple 
packet. When a Fi receives a considerable number of such masked updates, it proceeds to select the 
best updates using statistical methods like mean and standard deviation. The top n such IIoT devices 
with the best updates are selected as legitimate devices while the rest are rejected. Only such 
legitimate devices will be allowed to contribute their model updates for the final aggregation of the 
global model. Hence, Fi signs the commitment to the unmasked update for the selected devices 
using its private key. It then sends the signed update back to the concerned IIoT devices. 

• Secret Sharing: When each legitimate Dij receives the signed update, it first performs signature 
verification to verify the authenticity of the fog node Fi. Next, it proceeds to split gij into n shares 
[where n is the number of IIoT devices selected as legitimate in the previous step] as per Shamir's 
Secret Sharing scheme [11]. It also computes a witness witin respective to each share of gij. These 
witnesses will allow the corresponding IIoT devices to verify that the secret share was indeed 
computed over the received verified commitment. Finally, each Dij distributes a 3-tuple packet 
consisting of the secret share, the associated witness, and the signature received from Fi in the 
previous step to the other corresponding Dij. Each Dij, on receiving this 3-tuple packet, does the 
following: 

 
(a) It first verifies the signature to ensure that the received update is from a legitimate node. If the 

verification fails, it discards the 3-tuple packet; else, it proceeds to the next step. 
(b) Next, it utilizes the witness to verify that the received secret share is a part of the verified 

commitment. If the verification fails, it means that either a malicious node has sent its secret share 
or a legitimate node has sent a malicious secret share. In both cases, the node is declared 
malicious and is thereby penalized. On successful verification, Dij proceeds to the next step. 

(c) Once each Dij receives sufficient secret shares, it then locally adds the received shares to product 
SDij .   

(d) Computes the hash of SDij and stores it as a transaction in the blockchain. 
(e) Finally, each Dij sends SDij  to its nearest online fog node Fi. 

 
 
• Computation by Fog: Each fog node Fi receives SDi1 , SDi2 , . . . , SDin values from n IIoT devices 

lying within its communication range. Fi then calls contract S to verify the integrity of the received 
SDij using its hash value stored in the blockchain. If the verification fails, Fi concludes that SDij has 
either been sent incorrectly or tampered midway, and it thus discards this SDij value. Otherwise, Fi is 
assured that the integrity of the received SDij is preserved. Once Fi verifies a sufficient number of 
SDij values, it proceeds to compute the cumulative gradient ci using the reconstruction mechanism 
described in Shamir's Secret Share [11]. Here, even if some IIoT devices are offline or busy during 
this stage and don't send their share of SDij, the reconstruction is still feasible given at least t IIoT 
devices participate. This operation basically computes the summation part of the Gradient Descent 
algorithm [2]. Each Fi then stores the commitment, i.e., COM(ci) and the hash of ci as a transaction 
in the blockchain. Lastly, it forwards ci to the cloud. 

 



• Data Aggregation: When the Cloud receives ci values from the fog nodes F1, . . .  , Fm, it calls contract 
S to verify the integrity of the received ci using its hash value stored in the blockchain. If the 
verification fails, the cloud concludes that ci has either been sent incorrectly or tampered midway, 
and it thus discards this ci value. Otherwise, t h e  cloud is assured that the integrity of the received 
ci is preserved. Once cloud verifies a sufficient number of SDij   values, it generates c = c1 + c2 + . . . + 
cm and sends a c back to each Fi. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

• Result Verification: Each Fi on receiving c from the cloud computes commitment, i.e., COM © and 
calls contract S, to verify whether the commitment to the received c is consistent with the 
commitments to ci stored previously by each individual Fi in the blockchain. 

𝐶𝐶𝐶𝐶𝑀𝑀(𝑐𝑐) = �𝐶𝐶𝐶𝐶𝑀𝑀(𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

If this equality holds, then Fi proceeds to the next step. Otherwise, it means that the cloud has 
behaved maliciously while aggregating the global model. Hence, contract S rejects the result and 
penalizes the cloud for misconduct. 

Fig. 1. Workflow of our Proposed Scheme 
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• Update Model Parameters: On acceptance of the result, Fi computes the updated model parameter 

based on the latest trained global model. Fi then sends back this updated model parameter to each 
device Dij, who updates its respective model parameter which is then used for the next training 
iteration. 
From the above discussion, it is evident that by leveraging the immutability property of 

blockchain, we have been able to ensure the verifiability of the data exchanged in the system. Further, 
the introduction of smart contracts has also helped us prevent the players' malicious activity. This is 
because smart contracts are tamper-resistant and hence cannot be mischievously modified to serve' 
ne's purpose. Lastly, through the use of smart contracts coupled with the inherent cryptocurrency of 
blockchain, we have also been able to maintain fairness by penalizing the malicious entities as and 
when required. Thus, we can rightfully claim that we have been able to achieve additional security by 
introducing blockchain as the inherent backbone. 

IV. CONCLUSION AND FUTURE WORK 

We have presented a blockchain-enabled collaborative learning setup suitable for Industrial IoT 
scenarios. Our proposed scheme uses the traditional permissionless blockchain as the backbone of the 
infrastructure design. By leveraging the benefits of a smart contract-enabled blockchain platform, we 
have ensured additional security (e.g., verifiability). The proposed scheme provides defense poisoning 
and information leakage attacks and presents malicious activities from the involved parties (i.e., 
device, fog, and cloud). Apart from that, the scheme also handles collusion cases. In the future, we plan 
to provide a detailed algorithmic construction of the proposed scheme along with its security analysis. 
We would also develop a prototype in Ethereum to establish the validity of our scheme. 
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